
ARM7TDMI
 Instruction Set

Reference

i

Table of Contents
1 Instruction Encoding .. 1

1.1 ARM7TDMI – ARM Instructions .. 1
1.2 ARM7TDMI – THUMB Instructions .. 2

2 Conditional Execution ... 2
2.1 Condition Field .. 2
2.2 Condition Codes .. 2

3 Addressing, Operands and Directives ... 3
3.1 General Notes ... 3
3.2 Shifter Operands ... 3
3.3 Load/Store Register Addressing Modes ... 6
3.4 Miscellaneous Load/Store Addressing Modes ... 8
3.5 Memory Allocation and Operand Alignment ... 9
3.6 Miscellaneous Assembler Directives ... 10

4 Instruction Descriptions ... 12
4.1 General Information ... 12
4.2 ADC – Add with Carry ... 12
4.3 ADD - Add ... 13
4.4 AND – Bit-wise AND ... 13
4.5 B, BL – Branch, Branch and Link ... 14
4.6 BIC – Bit Clear ... 15
4.7 BX – Branch and Exchange ... 15
4.8 CMN – Compare Negative ... 16
4.9 CMP - Compare .. 16
4.10 EOR – Bit-wise Exclusive-OR ... 17
4.11 LDM – Load Multiple ... 17
4.12 LDR – Load Register ... 19
4.13 LDRB – Load Register Byte ... 20
4.14 LDRH – Load Register Halfword .. 20
4.15 LDRSB – Load Register Signed Byte .. 21
4.16 LDRSH – Load Register Signed Halfword ... 21
4.17 MLA – Multiply-Accumulate ... 22
4.18 MOV – Move .. 22
4.19 MRS – Move PSR into General-Purpose Register ... 23
4.20 MSR – Move to Status Register from ARM Register .. 23
4.21 MUL – Multiply ... 24
4.22 MVN – Move Negative .. 25
4.23 ORR – Bit-wise Inclusive-OR ... 25
4.24 RSB – Reverse Subtract .. 26
4.25 RSC – Reverse Subtract with Carry .. 26
4.26 SBC – Subtract with Carry .. 27
4.27 SMLAL – Signed Multiply-Accumulate Long .. 27
4.28 SMULL – Signed Multiply Long .. 28
4.29 STM – Store Multiple .. 28
4.30 STR – Store Register .. 30
4.31 STRB – Store Register Byte .. 30
4.32 STRH – Store Register Halfword .. 31
4.33 SUB - Subtract ... 31
4.34 SWI – Software Interrupt ... 32
4.35 SWP - Swap ... 32
4.36 SWPB – Swap Byte .. 33
4.37 TEQ – Test Equivalence .. 34
4.38 TST - Test ... 34
4.39 UMLAL – Unsigned Multiply-Accumulate Long .. 35
4.40 UMULL – Unsigned Multiply Long .. 35

5 Pseudo-Instructions ... 36
5.1 ADR – Load Address (short-range) .. 36
5.2 ADRL – Load Address (medium-range) .. 36
5.3 ASR – Arithmetic Shift Right ... 36
5.4 LDR – Load Register ... 37
5.5 LSL – Logical Shift Left ... 37
5.6 LSR – Logical Shift Right... 37
5.7 NOP – No Operation ... 38
5.8 POP - Pop .. 38
5.9 PUSH - Push .. 38
5.10 ROR – Rotate Right .. 38
5.11 RRX – Rotate Right with Extend .. 39

Page 1

1 Instruction Encoding
1.1 ARM7TDMI – ARM Instructions
The ARM7TDMI uses a fixed-length, 32-bit instruction encoding scheme for all ARM instructions. The basic encoding for all
ARM7TDMI instructions is shown below. Individual instruction descriptions and encodings are shown in section 4 of this document.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Multiply (accumulate) cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Multiply (accumulate) long cond 0 0 0 0 1 U A S Rd_MSW Rd_LSW Rn 1 0 0 1 Rm

Branch and exchange cond 0 0 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 Rn

Single data swap cond 0 0 0 1 0 B 0 0 Rn Rd 0 0 0 0 1 0 0 1 Rm

Halfword data transfer, register offset cond 0 0 0 P U 0 W L Rn Rd 0 0 0 0 1 0 1 1 Rm

Halfword data transfer, immediate offset cond 0 0 0 P U 1 W L Rn Rd offset 1 0 1 1 offset

Signed data transfer (byte/halfword) cond 0 0 0 P U B W L Rn Rd addr_mode 1 1 H 1 addr_mode

Data processing and PSR transfer cond 0 0 I opcode S Rn Rd operand2

Load/store register/unsigned byte cond 0 1 I P U B W L Rn Rd addr_mode

Undefined cond 0 1 1 1

Block data transfer cond 1 0 0 P U 0 W L Rn register list

Branch cond 1 0 1 L offset

Coprocessor data transfer cond 1 1 0 P U N W L Rn CRd CP# offset

Coprocessor data operation cond 1 1 1 0 CP opcode CRn CRd CP# CP 0 CRm

Coprocessor register transfer cond 1 1 1 0 CP opc L CRn Rd CP# CP 1 CRm

Software interrupt cond 1 1 1 1 ignored by processor

Page 2

1.2 ARM7TDMI – THUMB Instructions
The ARM7TDMI uses a fixed-length, 16-bit instruction encoding scheme for all Thumb
instructions. The Thumb instruction set is a subset of the ARM instruction set, and is intended to
permit a higher code density (smaller memory requirement) than the ARM instruction set in
many applications. The processor executes in Thumb mode when bit 5 of the CPSR is 1.
Exception processing is always done in ARM mode; the processor automatically switches to
ARM mode when entering an exception mode. Use of the Thumb instruction set will not be
required in ECE 353/315, and so is not covered here.

2 Conditional Execution

2.1 Condition Field
All ARM7TDMI instructions can be executed conditionally, based on a 4-bit condition field in
the instruction. The processor tests the state of the condition flags in the CPSR (N, Z, V, C), and
if the condition flag state matches the condition, the instruction executes normally. If the
condition flag state does not match the condition, the instruction is executed as a NOP (no
operation).

2.2 Condition Codes
The condition codes and use are shown below. If the condition is omitted in instructions, the AL
(always) condition is used to specify that the instruction should always execute.

Opcode
[31:28]

Mnemonic
Extension Meaning Condition flag state

0000 EQ Equal Z==1
0001 NE Not equal Z==0
0010 CS/HS Carry set / unsigned higher or same C==1
0011 CC/LO Carry clear / unsigned lower C==0
0100 MI Minus / negative N==1
0101 PL Plus / positive or zero N==0
0110 VS Overflow V==1
0111 VC No overflow V==0
1000 HI Unsigned higher (C==1) AND (Z==0)
1001 LS Unsigned lower or same (C==0) OR (Z==1)
1010 GE Signed greater than or equal N == V
1011 LT Signed less than N != V
1100 GT Signed greater than (Z==0) AND (N==V)
1101 LE Signed less than or equal (Z==1) OR (N!=V)
1110 AL Always (unconditional) Not applicable
1111 (NV) Never Obsolete, unpredictable in ARM7TDMI

Page 3

3 Addressing, Operands and Directives
3.1 General Notes
In general, using R15 (PC) as the destination register is not appropriate for most
instructions. Many instructions will have unpredictable behavior if R15 is the destination.

The ARM supports instruction set extensions by reserving certain bit combinations in
the operand fields of otherwise valid instructions. The assembler will ensure that these
bit combinations are not used, but these must be avoided when hand-coding
instructions.

The notation SBZ means “should be zeros”, SBO means “should be ones”.

3.2 Shifter Operands
The shifter operand is represented by the least-significant 12 bits of the instruction. It
can take one of eleven forms, as listed below. For illustration, each form has one or
more examples based on the Compare instruction (CMP <Rn>, <shifter_operand>). For
instructions that use shifter operands, the C flag update is dependent on the form of
the operand used.

3.2.1 Immediate Operands
Immediate values are signified by a leading # symbol. The operand is actually stored in
the instruction as an 8-bit value with a 4-bit rotation code. The resultant value is the 8-
bit value rotated right 0-30 bits (twice the rotation code amount), as illustrated below.
Only values that can be represented in this form can be encoded as immediate
operands.

The assembler will make substitutions of comparable instructions if it makes it possible
to create the desired immediate operand. For example, CMP R0, #-1 is not a legal
instruction since it is not possible to specify -1 (0xFFFFFFFF) as an immediate value, but
it can be replaced by CMN R0, #1. If the rotate value is non-zero, the C flag is set to bit
31 of the immediate value, otherwise it is unchanged.

Syntax: #<immediate>
Example: CMP R0, #7
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
rotate_imm immediate_8

Page 4

3.2.2 Register Operands
The register value is used directly. The C flag is unchanged. Note that this is actually a
form of the Register Operand, Logical Shift Left by Immediate option (see below) with a
0-bit shift.

Syntax: <Rm>
Example: CMP R0, R1
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 0 0 0 Rm

3.2.3 Register Operand, Logical Shift Left by Immediate
The register value is shifted left by an immediate value in the range 0-31. Note that a
shift of zero is identical to the encoding for a register operand with no shift. The C flag
will be updated with the last value shifted out of Rm unless the shift count is 0.

Syntax: <Rm>, LSL #<immediate>
Example: CMP R0, R1, LSL #7
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
shift_imm 0 0 0 Rm

3.2.4 Register Operand, Logical Shift Left by Register
The register value is shifted left by a value contained in a register. The C flag will be
updated with the last value shifted out of Rm unless the value in Rs is 0.

Syntax: <Rm>, LSL <Rs>
Example: CMP R0, R1, LSL R2
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
Rs 0 0 0 1 Rm

3.2.5 Register Operand, Logical Shift Right by Immediate
The register value is shifted right by an immediate value in the range 1-32. The C flag
will be updated with the last value shifted out of Rm.

Syntax: <Rm>, LSR #<immediate>
Example: CMP R0, R1, LSR #7
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
shift_imm 0 1 0 Rm

Page 5

3.2.6 Register Operand, Logical Shift Right by Register
The register value is shifted right by a value contained in a register. The C flag will be
updated with the last value shifted out of Rm unless the value in Rs is 0.

Syntax: <Rm>, LSR <Rs>
Example: CMP R0, R1, LSR R2
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
Rs 0 0 1 1 Rm

3.2.7 Register Operand, Arithmetic Shift Right by Immediate
The register value is arithmetically shifted right by an immediate value in the range 1-
32. The arithmetic shift fills from the left with the sign bit, preserving the sign of the
number. The C flag will be updated with the last value shifted out of Rm.

Syntax: <Rm>, ASR #<immediate>
Example: CMP R0, R1, ASR #7
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
shift_imm 1 0 0 Rm

3.2.8 Register Operand, Arithmetic Shift Right by Register
The register value is arithmetically shifted right by a value contained in a register. The
arithmetic shift fills from the left with the sign bit, preserving the sign of the number.
The C flag will be updated with the last value shifted out of Rm unless the value in Rs is
0.

Syntax: <Rm>, ASR <Rs>
Example: CMP R0, R1, ASR R2
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
Rs 0 1 0 1 Rm

3.2.9 Register Operand, Rotate Right by Immediate
The register value is rotated right by an immediate value in the range 1-31. [A rotate
value of 0 in this instruction encoding will cause an RRX operation to be performed.]
The C flag will be updated with the last value shifted out of Rm.

Syntax: <Rm>, ROR #<immediate>
Example: CMP R0, R1, ROR #7
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
shift_imm 1 1 0 Rm

Page 6

3.2.10 Register Operand, Rotate Right by Register
The register value is rotated right by a value contained in a register. The C flag will be
updated with the last value shifted out of Rm unless the value in Rs is 0.

Syntax: <Rm>, ROR <Rs>
Example: CMP R0, R1, ROR R2
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
Rs 0 1 1 1 Rm

3.2.11 Register Operand, Rotate Right with Extend
The register value is rotated right by one bit through the C flag, i.e. CRm[0],
Rm[31]C, Rm[30]Rm[29], etc.

Syntax: <Rm>, RRX
Example: CMP R0, R1, RRX
Encoding:

11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0 1 1 0 Rm

3.3 Load/Store Register Addressing Modes
There are nine options that can be specified for the addressing mode, as listed below.
All options include a base register. See the ARM Architecture Reference Manual section
5.2 for more detailed information.

Note that the ARM processor does not support a direct addressing mode for load/store
operation. (Direct addressing is where the address is encoded in the instruction.)
However, a label (i.e. a memory location name) can be specified as the memory
address in a load/store instruction. In this case, the assembler will attempt to reach the
label using the “base register with immediate offset” mode, using the PC as the base
register and computing the required offset.

3.3.1 Base register with immediate offset
[Rn, #+/-<offset12>]

memory_address = Rn +/- offset12
Rn is unchanged after instruction

3.3.2 Base register with register offset
[Rn, +/-<Rm>]

memory_address = Rn +/- Rm
Rn is unchanged after instruction

Page 7

3.3.3 Base register with shifted register offset
[Rn, +/-<Rm>, <shift> #<shift_immediate>]

memory_address = Rn +/- shifted_Rm (see below)
Rn is unchanged after instruction

3.3.4 Base register with immediate offset, pre-indexed
[Rn, #+/-<offset12>]!

memory_address = Rn +/- offset12
Rn = memory_address after instruction

3.3.5 Base register with register offset, pre-indexed
[Rn, +/-<Rm>]!

memory_address = Rn +/- Rm
Rn = memory_address after instruction

3.3.6 Base register with shifted register offset, pre-indexed
[Rn, +/-<Rm>, <shift> #<shift_immediate>]!

memory_address = Rn +/- shifted_Rm (see below)
Rn = memory_address after instruction

3.3.7 Base register with immediate offset, post-indexed
[Rn], #+/-<offset12>

memory_address = Rn
Rn = Rn +/- offset12 after instruction

3.3.8 Base register with register offset, post-indexed
[Rn], +/-<Rm>

memory_address = Rn
Rn = Rn +/- Rm after instruction

3.3.9 Base register with shifted register offset, post-indexed
[Rn], +/-<Rm>, <shift> #<shift_immediate>

memory_address = Rn
Rn = Rn +/- shifted_Rm after instruction (see below)

The shifted register offset modes are specified in the same manner as other shifter
operands, where the <shift> #<shift_immediate> fields can be one of the below.

Logical shift left - LSL #0-31
Logical shift right - LSR #1-32
Arithmetic shift right - ASR #1-32
Rotate right - ROR #1-32
Rotate right with extend - RRX

Page 8

3.4 Miscellaneous Load/Store Addressing Modes
These options apply only to the LDRSB, LDRH, LDRSH, STRH instructions. There are six
options that can be specified for the addressing mode, as listed below. All options
include a base register. See the ARM Architecture Reference manual section 5.3 for
more detailed information.

Note that the ARM processor does not support a direct addressing mode for load/store
operation. (Direct addressing is where the address is encoded in the instruction.)
However, a label (i.e. a memory location name) can be specified as the memory
address. In this case, the assembler will attempt to reach the label using the base
register with immediate offset mode, using the PC as the base register and computing
the required offset.

3.4.1 Base register with immediate offset
[Rn, #+/-<offset8>]

memory_address = Rn +/- offset8
Rn is unchanged after instruction

3.4.2 Base register with register offset
[Rn, +/-<Rm>]

memory_address = Rn +/- Rm
Rn is unchanged after instruction

3.4.3 Base register with immediate offset, pre-indexed
[Rn, #+/-<offset8>]!

memory_address = Rn +/- offset8
Rn = memory_address after instruction

3.4.4 Base register with register offset, pre-indexed
[Rn, +/-<Rm>]!

memory_address = Rn +/- Rm
Rn = memory_address after instruction

3.4.5 Base register with immediate offset, post-indexed
[Rn], #+/-<offset8>

memory_address = Rn
Rn = Rn +/- offset8 after instruction

3.4.6 Base register with register offset, post-indexed
[Rn], +/-<Rm>

memory_address = Rn
Rn = Rn +/- Rm after instruction

Page 9

3.5 Memory Allocation and Operand Alignment
This section presents an abridged list of the most commonly used assembler directives.
Full documentation is available in the ARM Assembler manuals.

3.5.1 Literals
Literal substitutions are indicated with the EQU directives.
Syntax: name EQU expr {,type}
Description: The EQU directive informs the assembler to perform a literal substitution
whenever it encounters name in the source file, replacing it with expr. The expression
can be a numeric constant, a relative address, or an absolute address. If an absolute
address is specified, then the type field can be one of ARM, THUMB, CODE16, CODE32,
or DATA. (Note that only ARM or DATA are applicable to code written in ECE 353/315.)

3.5.2 Numeric Expressions
Numeric values can be expressed in a number of ways. The most common are;
Decimal – assumed if not otherwise qualified (i.e. 12345)
Hexadecimal – signified by a leading 0x (i.e. 0x12A3) or a leading & (i.e. &12A3)
Arbitrary radix – an arbitrary number base between 2 and 9 can be specified in the
form base_value (i.e. 2_10110110 represents the binary number 10110110).
Character constants – signified by a character in single quotes (i.e. ‘A’)

3.5.3 String Expressions
String expressions are indicated by double quotes (i.e. “this is a string!”). To include a
double quote or dollar sign in the string, use two of the character in sequence (i.e.
“dollar sign = $$”. C string escape sequences are also supported (i.e. \n for a newline
character).

3.5.4 Memory Allocation Directives
ALIGN – Align
Syntax: ALIGN
Description: ALIGN with no arguments causes that location to be aligned on an
instruction (4-byte) boundary.

DCB – Allocate Byte
Syntax: {label} DCB expr {, expr}
Description: DCB allocates bytes of memory, and initializes them to the values given.
The expr fields can either be numeric constants and/or a quoted string. If DCB is
followed by a label that is a branch target, use the ALIGN directive to ensure that the
label is properly aligned.

DCD/DCDU – Allocate Words
Syntax: {label} DCD expr {, expr}
Description: DCD allocates words of memory, padding as necessary to ensure word-
alignment, and initializes them to the values given. The expr fields can either be

Page 10

numeric constants or program-relative expressions (i.e. labels). DCDU allocates without
ensuring alignment. If DCDU is followed by a label that is a branch target, use the
ALIGN directive to ensure that the label is properly aligned.

DCW/DCWU – Allocate Halfwords
Syntax: {label} DCW expr {, expr}
Description: DCW allocates halfwords of memory, padding as necessary to ensure
halfword-alignment, and initializes them to the values given. The expr fields must be
numeric constants in the range -32678 to +65535. DCWU allocates without ensuring
alignment. If DCW/DCWU is followed by a label that is a branch target, use the ALIGN
directive to ensure that the label is properly aligned.

SPACE – Allocate Memory Space
Syntax: {label} SPACE number_of_bytes
Description: SPACE allocates the given number of zero-initialized bytes. If SPACE is
followed by a label that is a branch target, use the ALIGN directive to ensure that the
label is properly aligned.

3.5.5 Operand Alignment
In general, all memory accesses by the ARM7TDMI must be aligned. For a word (4-
byte) access, the target must be aligned on a 4-byte boundary. Halfwords must be
aligned on a 2-byte boundary.

3.6 Miscellaneous Assembler Directives
3.6.1 AREA – Area Directive
Syntax: AREA {section_name} {attr} {,attr}…
Description: The AREA directive establishes indivisible memory regions that are
manipulated by the linker. Key attribute fields include CODE (area includes only
instructions), DATA (area includes only data), READONLY (the default for CODE areas),
READWRITE (the default for DATA areas), NOINIT (must only contain uninitialized data
or data initialized to 0, the linker settings determine if initialization is actually done.)
When linking for the ADuC7026, the default behavior of the linker will place CODE areas
into flash memory and DATA areas into SRAM.

3.6.2 ARM – Use ARM Encoding
Syntax: ARM
Description: Informs the assembler to assemble instructions for ARM execution.
CODE32 is a synonym for ARM.

3.6.3 END – End of File
Syntax: END
Description: Informs the assembler that the end of the source file has been reached.
Every assembly language file must have an END directive.

Page 11

3.6.4 ENTRY – Code Entry Point
Syntax: ENTRY
Description: The ENTRY directive indicates the point in the code where program
execution should begin. There should be only ONE entry point per complete program.
Note that in developing the software for an embedded system, execution will begin at
the reset vector, so the code entry point will be determined by what code is linked at
that address and the ENTRY directive is not used.

3.6.5 EXPORT – Export
Syntax: EXPORT symbol
Description: Instructs the assembler to include the symbol description in the output file
so that it can be used by the linker to resolve external references.

3.6.6 EXTERN – External Symbol
Syntax: EXTERN symbol
Description: Informs the assembler that the symbol is defined in another source file. If
no reference is made to the symbol, it is not imported into the file.

3.6.7 GLOBAL – Global
Synonym for EXPORT.

3.6.8 INCLUDE – Include File
Syntax: INCLUDE filename
Description: The listed file is read in by the assembler as though it were part of the
source file before it proceeds to the next line in the source file. INCLUDEs can be
nested.

3.6.9 IMPORT – Import
Syntax: IMPORT symbol
Description: Informs the assembler that the symbol is defined in another source file.
The symbol is imported whether it is referenced in the file or not.

3.6.10 KEEP – Keep Local Symbols
Syntax: KEEP {symbol}
Description: Forces the assembler to describe the symbol in its output file, so it will be
visible to the debugger. If symbol is blank, all local symbols are preserved. By default,
the ARM assembler only preserves symbols in the output file if they are EXPORTed or
require relocation.

Page 12

4 Instruction Descriptions

4.1 General Information
A number of ARM7TDMI instructions will not be used in conjunction with the ADuC7026
processor used in ECE 353 and ECE 315. These instructions are listed below, and do not
have detailed information in this section. Further information on these instructions can
be obtained from the ARM Architecture Reference Manual.

CDP – Coprocessor Data Processing
LDC – Load Coprocessor
LDRBT – Load Register Byte with Translation
LDRT – Load Register with Translation
MCR - Move to Coprocessor from ARM Register
MRC - Move to ARM Register from Coprocessor
STC - Store Coprocessor
STRBT - Store Register Byte with Translation
STRT - Store Register with Translation

4.2 ADC – Add with Carry
Syntax:
ADC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd Rn + shifter_operand + C

Flags updated if S used:
N, Z, V, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 0 1 0 1 S Rn Rd shifter operand

Usage and Examples:
The ADC instruction is used to implement efficient multiword addition. For example, if
64-bit numbers are stored in R1:0 and R3:2, their sum can be stored in R5:4 as shown
below.

ADDS R4, R2, R0 ;add least significant words
 ADC R5, R3, R1 ;add most significant words plus carry

Page 13

4.3 ADD - Add
Syntax:
ADD{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd Rn + shifter_operand

Flags updated if S used:
N, Z, V, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 0 1 0 0 S Rn Rd shifter operand

Usage and Examples:
ADDS R0, R0, #1 ;increments R0, updates flags
ADD R0, R0, R0, ASR #2 ;multiply R0 by 1.25

4.4 AND – Bit-wise AND
Syntax:
AND{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd Rn AND shifter_operand

Flags updated if S used:
N, Z, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 0 0 0 0 S Rn Rd shifter operand

Usage and Examples:
 AND R0, R0, #0x8000 ;mask bit D15 of R0

Page 14

4.5 B, BL – Branch, Branch and Link
Syntax:
B{<cond>} <target_address>, BL{<cond>} <target_address>

RTL:
if(cond)

if(L==1)
R14 address of next instruction

PC PC + (signed_immediate_24 << 2)

Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 1 L signed_immediate_24

Usage and Examples:
The B/BL instructions are used to branch to a target address, based on an optional
condition. The BL instruction supports subroutine calls by storing the next instruction’s
address in R14, the link register. (The assembler defines LR as a pseudonym for R14.)
Since the offset value is a signed 24-bit value, the branch target must be within
approximately +/-32MB.

To return from a subroutine after using BL to call it, the preferred method is to use BX
LR. If the subroutine used the STM instruction to store a group of registers and the
return address on the stack (i.e. STMFD R13!, {R0-R5, LR}), then the return should be
executed in the complementary fashion by placing the saved link register value into the
PC (i.e. LDMFD R13!, {R0-R5, PC}).

Page 15

4.6 BIC – Bit Clear
Syntax:
BIC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd Rn AND NOT shifter_operand

Flags updated if S used:
N, Z

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 1 1 1 0 S Rn Rd shifter operand

Usage and Examples:
 BIC R0, R0, #0x8000 ;clears bit D15 of R0

4.7 BX – Branch and Exchange
Syntax:
BX{<cond>} <Rm>

RTL:
if(cond)

T flag Rm[0]
PC Rm & 0xFFFFFFFE

Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 1 0 SB0 SB0 SB0 0 0 0 1 Rm

Usage and Examples:
The BX instruction is used to branch to a target address stored in a register, based on
an optional condition. If bit 0 of the register is set to 1, then the processor will switch
to Thumb execution. (Bit 0 is forced to 0 in before the branch address is stored in the
PC.) The sample code below shows a call to a Thumb subroutine.

ADR R0, sub ;get subroutine address
ORR R0, #1 ;set bit 1
MOV LR, PC ;load link register with PC (this address + 8)

 BX R0 ;branch to Thumb subroutine
 ;subroutine returns here

Page 16

4.8 CMN – Compare Negative
Syntax:
CMN{<cond>} <Rn>, <shifter_operand>

RTL:
if(cond)

Rn + shifter_operand

Flags updated:
N, Z, V, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 1 0 1 0 1 Rn Rd shifter operand

Usage and Examples:
The CMN instruction performs an addition of the operands (equivalent to a subtraction
of the negative), but does not store the result. The flags are always updated.

CMP R0, #1 ;Z=1 if R0=-1, N=1 if R0<-1

4.9 CMP - Compare
Syntax:
CMP{<cond>} <Rn>, <shifter_operand>

RTL:
if(cond)

Rn - shifter_operand

Flags updated:
N, Z, V, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 1 0 1 0 1 Rn Rd shifter operand

Usage and Examples:
The CMP instruction performs a subtraction, but does not store the result. The flags are
always updated.

CMP R0, #1 ;Z=1 if R0=1, N=0 if R0>1

Page 17

4.10 EOR – Bit-wise Exclusive-OR
Syntax:
EOR{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd Rn XOR shifter_operand

Flags updated if S used:
N, Z, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 0 0 0 1 S Rn Rd shifter operand

Usage and Examples:
 EOR R0, R0, #0x8000 ;toggle bit D15 of R0

4.11 LDM – Load Multiple
There are three distinct variants of the LDM instruction. Two of them are for use in
conjunction with exception processing, and are not described here. Further information
can be obtained in the ARM Architecture Reference Manual.
Syntax:
LDM{<cond>}<addressing_mode>, <Rn>{!}, <registers>

RTL:
if(cond)
 start_address Rn

for i = 0 to 14
if(register_list[i] == 1)

Ri memory[next_address]
if(register_list[15] == 1)
 PC memory[next_address] & 0xFFFFFFFC

 if(writeback)
Rn end_address

Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 P U 0 W 1 Rn register_list

Page 18

Usage and Examples:
The LDM instruction permits block moves of memory to the registers and enables
efficient stack operations. The registers may be listed in any order, but the registers are
always loaded in order with the lowest numbered register getting the value form the
lowest memory address. If Rn is also listed in the register list and register writeback (W
bit) is set, the final value in Rn is unpredictable.
The addressing_mode field determines how next_address is calculated (bits P & W),
which control how the address is updated in conjunction with each register load. The
four addressing_mode values are;
 IA - increment address by 4 after each load (post-increment)
 IB - increment address by 4 before each load (pre-increment)
 DA - decrement address by 4 after each load (post-decrement)
 DB - decrement address by 4 before each load (pre-decrement)

The “!” following Rn controls the value of the writeback bit (bit W), and signifies that Rn
should be updated with the ending address at the end of the instruction. If the “!” is
not present (W=0), the value of Rn will be unchanged at the end of the instruction.

LDMIA R7, {R0, R2-R4} ;R0 memory[R7]
;R2 memory[R7+4]
;R3 memory[R7+8]
;R4 memory[R7+12]
;R7 is unchanged

LDMDB R7!, {R0, R2-R4} ;R0 memory[R7-16]
;R2 memory[R7-12]
;R3 memory[R7-8]
;R4 memory[R7-4]
;R7 R7 - 16

For use in conjunction with stack addressing, four alternative names can be used for
the addressing modes. These names are based on the type of stack being used instead
of the addressing mode being used. This eliminates confusion in coding stack push and
pop operations, since the type of stack will be the same for both the LDM and STM
instructions. In ARM syntax, a full stack is one where the stack pointer points to the last
used (full) location. An empty stack is one where the stack pointer points to the next
available (empty) stack location. As well, a stack can grow through increasing memory
addresses (ascending), or downward through decreasing memory addresses
(descending). The table below summarizes the stack addressing modes.

 FA (full ascending) - post-decrement (DA) on pop
 FD (full descending) - post-increment (IA) on pop
 EA (empty ascending) - pre-decrement (DB) on pop
 ED (empty descending) - pre-increment on (IB) pop

Page 19

The instructions below demonstrate a push operation followed by a pop operation
assuming an empty-ascending stack. Note that by including the link register (R14) in
the push operation, and the PC in the pop operation, a subroutine will return to the
caller as part of the context save/restore.

STMEA R13!, {R0, R2-R3, LR} ;memory[R13] R0
;memory[R13+4] R2
;memory[R13+8] R3
;memory[R13+12] R14
;R13 R13 + 16

LDMEA R13!, {R0, R2-R4, PC} ;R0 memory[R13-16]
;R2 memory[R13-12]
;R3 memory[R13-8]
;PC memory[R13-4]
;R13 R13 - 16

4.12 LDR – Load Register
Syntax:
LDR{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

Rd memory[memory_address]
 if(writeback)

Rn end_address
Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 I P U 0 W 1 Rn Rd addressing_mode

Usage and Examples:
The LDR instruction reads a word from memory and writes it to the destination register.
See the section Load/Store Register Addressing Modes for a description of the available
addressing modes.

 LDR R0, [R1] ;R0 = memory[R1]

If the memory address is not word-aligned, the value read is rotated right by 8 times
the value of bits [1:0] of the memory address. If R15 is specified as the destination, the
value is loaded from memory and written to the PC, effecting a branch.

Page 20

4.13 LDRB – Load Register Byte
Syntax:
LDRB{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

Rd[7:0] memory[memory_address], Rd[31:8] 0
 if(writeback)
 Rn end_address
Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 I P U 1 W 1 Rn Rd addressing_mode

Usage and Examples:
The LDRB instruction reads a byte from memory and zero-extends it into the
destination register. See the section Load/Store Register Addressing Modes for a
description of the available addressing modes.

 LDRB R0, [R1] ;R0 = memory[R1] (zero-extended)

4.14 LDRH – Load Register Halfword
Syntax:
LDRH{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

Rd[15:0] memory[memory_address], Rd[31:16] 0
 if(writeback)
 Rn end_address
Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U I W 1 Rn Rd addr_mode 1 0 1 1 addr_mode

Usage and Examples:
The LDRH instruction reads a halfword from memory, and zero-extends it to 32-bits in
the register. See the section Miscellaneous Load/Store Addressing Modes for a
description of the available addressing modes.

 LDRH R0, [R1] ;R0 = zero-extended memory[R1]

Page 21

4.15 LDRSB – Load Register Signed Byte
Syntax:
LDRSB{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

Rd[7:0] memory[memory_address]
Rd[31:8] Rd[7] (sign-extension)

 if(writeback)
Rn end_address

Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U I W 1 Rn Rd addr_mode 1 1 0 1 addr_mode

Usage and Examples:
The LDRSB instruction reads a byte from memory, and sign-extends it to 32-bits in the
register. See the section Miscellaneous Load/Store Addressing Modes for a description
of the available addressing modes.

 LDRSB R0, [R1] ;R0 = sign-extended memory[R1]

4.16 LDRSH – Load Register Signed Halfword
Syntax:
LDRSH{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

Rd[15:0] memory[memory_address], Rd[31:16] Rd[15] (sign-extension)
 if(writeback)

Rn end_address
Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U I W 1 Rn Rd addr_mode 1 1 1 1 addr_mode

Usage and Examples:
The LDRSH instruction reads a halfword from memory, and sign-extends it to 32-bits in
the register. See the section Miscellaneous Load/Store Addressing Modes for a
description of the available addressing modes.

LDRSH R0, [R1] ;R0 = sign-extended memory[R1]

Page 22

4.17 MLA – Multiply-Accumulate
Syntax:
MLA{<cond>}{S} <Rd >, <Rm>, <Rs>, <Rn>

RTL:
if(cond)

Rd Rn + (Rs • Rm)

Flags updated if S used:
N, Z (C is unpredictable)

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 0 1 S Rd Rn Rs 1 0 0 1 Rm

Usage and Examples:
MLA performs a 32x32 multiply operation, then stores the sum of Rn and the 32-bit
multiplication result to Rd. Since only the least significant 32-bits of the multiplication
are used, the result is the same for signed and unsigned numbers.
The instruction below adds the product of R1 and R2 to R0.

MLA R0, R1, R2, R0

4.18 MOV – Move
Syntax:
MOV{<cond>}{S} <Rd>, <shifter_operand>

RTL:
if(cond)

Rd shifter_operand
if(S==1 and Rd==R15)
 CPSR SPSR

Flags updated if S used and Rd is not R15 (PC):
N, Z, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 1 1 0 1 S SBZ Rd shifter operand

Usage and Examples:
MOV performs a move to a register from another register or an immediate value.

MOV R1, R0, LSL #2 ;R1 <- R0 * 4
 MOV R1, #1 ;R1 <- 0x0000001
If the S bit is set and the destination is R15 (the PC), the SPSR is also copied to CPSR.
This form of the instruction used to return from an exception mode.

Page 23

4.19 MRS – Move PSR into General-Purpose Register
Syntax:
MRS{<cond>} <Rd >, CPSR
MRS{<cond>} <Rd >, SPSR

RTL:
if(cond)

Rd CPSR/SPSR

Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 R 0 0 SB0 Rd SB0

Usage and Examples:
Moves the value of CPSR or the current SPSR into a general-purpose register.

 MRS R0, CPSR

4.20 MSR – Move to Status Register from ARM Register
Syntax:
MSR{<cond>} CPSR_<fields>, #<immediate>
MSR{<cond>} CPSR_<fields>, <Rm>
MSR{<cond>} SPSR_<fields>, #<immediate>
MSR{<cond>} SPSR_<fields>, <Rm>

RTL:
if(cond)

CPSR/SPSR immediate/register value

Flags updated:
N/A

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 1 1 0 R 1 0 field_mask SB0 rotate_imm immediate
cond 0 0 0 1 0 R 1 0 field_mask SB0 SBZ 0 0 0 0 Rm

Usage and Examples:
Moves the value of a register or immediate operand into the CPSR or the current SPSR.
This instruction is typically used by supervisory mode code. Further details on this
instruction can be found in the ARM Architecture Reference Manual.

Page 24

The <fields> indicate which fields of the CPSR/SPSR be written to should be allowed to
be changed. This limits any changes just to the fields intended by the programmer. The
allowed fields are;
c sets the control field mask bit (bit 16)
x sets the extension field mask bit (bit 17)
s sets the status field mask bit (bit 18)
f sets the flags field mask bit (bit 19)
One or more fields may be specified.

4.21 MUL – Multiply
Syntax:
MUL{<cond>}{S} <Rd >, <Rm>, <Rs>

RTL:
if(cond)

Rd Rs • Rm

Flags updated if S used:
N, Z (C is unpredictable)

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 0 0 0 S Rd SBZ Rs 1 0 0 1 Rm

Usage and Examples:
MUL performs a 32x32 multiply operation, and stores a 32-bit result. Since only the
least significant 32-bits are stored, the result is the same for signed and unsigned
numbers.
The instruction below stores the product of R1 and R2 to R0.
 MUL R0, R1, R2

Page 25

4.22 MVN – Move Negative
Syntax:
MVN{<cond>}{S} <Rd>, <shifter_operand>

RTL:
if(cond)

Rd NOT shifter_operand
if(S==1 and Rd==R15)
 CPSR SPSR

Flags updated if S used and Rd is not R15 (PC):
N, Z, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 1 1 1 1 S SBZ Rd shifter operand

Usage and Examples:
MVN complements the value of a register or an immediate value and stores it in the
destination register.

MVN R1, R0, LSL #2 ;R1 <- NOT (R0 * 4)
 MVN R1, #1 ;R1 <- 0xFFFFFFFE
If the S bit is set and the destination is R15 (the PC), the SPSR is also copied to CPSR.
This form of the instruction used to return from an exception mode.

4.23 ORR – Bit-wise Inclusive-OR
Syntax:
ORR{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd Rn OR shifter_operand

Flags updated if S used:
N, Z, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 1 1 0 0 S Rn Rd shifter operand

Usage and Examples:
 OR R0, R0, #0x8000 ;sets bit D15 of R0

Page 26

4.24 RSB – Reverse Subtract
Syntax:
RSB{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd shifter_operand - Rn

Flags updated if S used:
N, Z, V, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 0 0 1 1 S Rn Rd shifter operand

Usage and Examples:
RSB R0, R0, #0 ;negate R0 (2’s complement)
RSB R0, R0, R0, LSL #3 ;multiply R0 by 7

Note that the carry flag (C) is the complement of a borrow flag. If a borrow is required
by the operation, C will be set to 0.

4.25 RSC – Reverse Subtract with Carry
Syntax:
RSC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd shifter_operand – Rn – NOT C

Flags updated if S used:
N, Z, V, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 0 1 1 1 S Rn Rd shifter operand

Usage and Examples:
If a 64-bit number is stored in R1:0, it can be negated (2’s complement) as shown
below.
 RSCS R0, R0, #0 ;negate least significant word

RSC R1, R1, #0 ;negate most significant words minus borrow
Note that the carry flag (C) is the complement of a borrow flag. If a borrow is required
by the operation, C will be set to 0.

Page 27

4.26 SBC – Subtract with Carry
Syntax:
SBC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd Rn - shifter_operand – NOT C

Flags updated if S used:
N, Z, V, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 0 1 1 0 S Rn Rd shifter operand

Usage and Examples:
The SUB instruction is used to implement efficient multiword subtraction. For example,
if 64-bit numbers are stored in R1:0 and R3:2, their difference can be stored in R5:4 as
shown below.

SUBS R4, R2, R0 ;subtract least significant words
 SUB R5, R3, R1 ;subtract most significant words minus borrow
Note that the carry flag (C) is the complement of a borrow flag. If a borrow is required
by the operation, C will be set to 0.

4.27 SMLAL – Signed Multiply-Accumulate Long
Syntax:
SMLAL{<cond>}{S} <Rd_LSW>, <Rd_MSW>, <Rm>, <Rs>

RTL:
if(cond)

Rd_MSW:Rd_LSW Rd_MSW:Rd_LSW + (Rs • Rm)

Flags updated if S used:
N, Z (V, C are unpredictable)

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 1 1 S Rd_MSW Rd_LSW Rs 1 0 0 1 Rm

Usage and Examples:
SMLAL performs a signed 32x32 multiply operation with a 64-bit accumulation. The
product of Rm and Rs is added to the 64-bit signed value contained in the register pair
Rd_MSW:Rd_LSW. All values are interpreted as 2’s-complement.
The instruction below adds the product of R2 and R3 to the 64-bit number stored in
R1:0.

SMLAL R0, R1, R2, R3

Page 28

4.28 SMULL – Signed Multiply Long
Syntax:
SMULL{<cond>}{S} <Rd_LSW>, <Rd_MSW>, <Rm>, <Rs>

RTL:
if(cond)

Rd_MSW:Rd_LSW Rs • Rm

Flags updated if S used:
N, Z (V, C are unpredictable)

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 1 0 S Rd_MSW Rd_LSW Rs 1 0 0 1 Rm

Usage and Examples:
SMULL performs a signed 32x32 multiply operation. The product of Rm and Rs is stored
as a 64-bit signed value in the register pair Rd_MSW:Rd_LSW. All values are interpreted
as 2’s-complement.
The instruction below stores the product of R2 and R3 as a 64-bit number in R1:0.
 SMULL R0, R1, R2, R3

4.29 STM – Store Multiple
There are two distinct variants of the STM instruction. One of them is for use in
conjunction with exception processing, and is not described here. Further information
can be obtained in the ARM Architecture Reference Manual.
Syntax:
STM{<cond>}<addressing_mode>, <Rn>{!}, <registers>

RTL:
if(cond)
 start_address Rn

for i = 0 to 15
if(register_list[i] == 1)

memory[next_address] Ri
 if(writeback)

Rn end_address
Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 0 0 P U 0 W 0 Rn register_list

Page 29

Usage and Examples:
The STM instruction permits block moves of registers to memory and enables efficient
stack operations. The registers may be listed in any order, but the registers are always
stored in order with the lowest numbered register going to the lowest memory address.
If Rn is also listed in the register list and register writeback (W bit) is set, the final value
stored for Rn can be unpredictable.
The addressing_mode field determines how next_address is calculated (bits P & W),
which control how the address is updated in conjunction with each register store. The
four addressing_mode values are;
 IA - increment address by 4 after each load (post-increment)
 IB - increment address by 4 before each load (pre-increment)
 DA - decrement address by 4 after each load (post-decrement)
 DB - decrement address by 4 before each load (pre-decrement)

The “!” following Rn controls the value of the writeback bit (bit W), and signifies that Rn
should be updated with the ending address at the end of the instruction. If the “!” is
not present (W=0), the value of Rn will be unchanged at the end of the instruction.

STMIA R7, {R0, R2-R4} ;memory[R7] R0
;memory[R7+4] R2
;memory[R7+8] R3
;memory[R7+12] R4
;R7 is unchanged

STMDB R7!, {R0, R2-R4} ;memory[R7-16] R0
;memory[R7-12] R2
;memory[R7-8] R3
;memory[R7-4] R4
;R7 R7 - 16

For use in conjunction with stack addressing, four alternative names can be used for
the addressing modes. See the LDM instruction for a detailed discussion and example of
usage.

Page 30

4.30 STR – Store Register
Syntax:
STR{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

memory[memory_address] Rd
 if(writeback)

Rn end_address

Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 I P U 0 W 0 Rn Rd addressing_mode

Usage and Examples:
The STR instruction stores a single register to memory. See the section Load/Store
Register Addressing Modes for a description of the available addressing modes.

STR R0, [R1], -R2, LSL #2 ;memory[R1] = R0, R1 = R1 – (R2 * 4)
STR R0, [R1, #4] ;memory[R1+4] = R0, R1 unchanged

4.31 STRB – Store Register Byte
Syntax:
STRB{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

memory[memory_address] Rd[7:0]
 if(writeback)

Rn end_address
Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 1 I P U 1 W 0 Rn Rd addressing_mode

Usage and Examples:
The STRB instruction stores the least significant byte of a register to memory. See the
section Load/Store Register Addressing Modes for a description of the available
addressing modes.

 STRB R0, [R1, #4]! ;memory[R1+4] = R0, R1=R1+4

Page 31

4.32 STRH – Store Register Halfword
Syntax:
STRH{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

memory[memory_address] Rd[15:0]
 if(writeback)

Rn end_address
Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 P U I W 0 Rn Rd addr_mode 1 0 1 1 addr_mode

Usage and Examples:
The STRH instruction stores the least significant halfword (2 bytes) of a register to
memory. See the section Miscellaneous Load/Store Addressing Modes for a description
of the available addressing modes.

STRH R0, [R1], #2 ;memory[R1] = R0, R1 = R1 + 2
 STRH R0, [R1, #-2] ;memory[R1 – 2]=R0, R1 unchanged

4.33 SUB - Subtract
Syntax:
SUB{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd Rn - shifter_operand

Flags updated if S used:
N, Z, V, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 0 0 1 0 S Rn Rd shifter operand

Usage and Examples:
SUBS R0, R0, #1 ;decrements R0, updates flags
SUB R0, R0, R0, ASR #2 ;multiply R0 by 0.75

Note that the carry flag (C) is the complement of a borrow flag. If a borrow is required
by the operation, C will be set to 0.

Page 32

4.34 SWI – Software Interrupt
Syntax:
SWI{<cond>} <immediate_24>

RTL:
if(cond)

R14_svc address of next instruction after SWI instruction
SPSR_svc CPSR ; save current CPSR
CPSR[4:0] 10011b ; supervisor mode
CPSR[5] 0 ; ARM execution

 CPSR[7] 1 ; disable interrupts
 PC 0x00000008 ; jump to exception vector

Flags updated:
N/A

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 1 1 1 1 immediate_24

Usage and Examples:
The SWI instruction causes a SWI exception. The processor disables interrupts,
switches to ARM execution if previously in Thumb, and enters supervisory mode.
Execution starts at the SWI exception address.

The 24-bit immediate value is ignored by the instruction, but the value in the instruction
can be determined by the exception handler if desired. Parameters can also be passed
to the SWI handler in general-purpose registers or memory locations.

4.35 SWP - Swap
Syntax:
SWP{<cond>} <Rd>, <Rm>, [<Rn>]

RTL:
if(cond)

temp [Rn]
[Rn] Rm
Rd temp

Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 0 0 0 Rn Rd SBZ 1 0 0 1 Rm

Page 33

Usage and Examples:
The SWP instruction exchanges a word between a register and memory. This
instruction is intended to support semaphore manipulation by completing the transfers
as a single, atomic operation.

ADR R1, semaphore ;semaphore address
MOV R0, #1

 SWP R0, R0, [R1] ;make swap
 CMPS R0, #0 ;test result

4.36 SWPB – Swap Byte
Syntax:
SWPB{<cond>} <Rd>, <Rm>, [<Rn>]

RTL:
if(cond)

temp [Rn]
[Rn] Rm
Rd temp

Flags updated:
None

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 1 0 1 0 0 Rn Rd SBZ 1 0 0 1 Rm

Usage and Examples:
The SWPB instruction exchanges a single byte between a register and memory. This
instruction is intended to support semaphore manipulation by completing the transfers
as a single, atomic operation.

ADR R1, semaphore ;semaphore address
MOV R0, #1

 SWPB R0, R0, [R1] ;make swap
 TST R0, #0xFF ;test result

Page 34

4.37 TEQ – Test Equivalence
Syntax:
TEQ{<cond>} <Rn>, <shifter_operand>

RTL:
if(cond)

Rn XOR shifter_operand

Flags updated:
N, Z, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 1 0 0 1 1 Rn Rd shifter operand

Usage and Examples:
The TEQ instruction performs a non-destructive bit-wise XOR (the result is not stored).
The flags are always updated. The most common use for this instruction is to determine
if two operands are equal without affecting the V flag. It can also be use to tell if two
values have the same sign, since the N flag will be the logical XOR of the two sign bits.

TEQ R0, #0x8000 ;sets Z = 1 if R0 contains the value 0x00008000
 TEQ R0, R1 ;sets N = 1 if signs are different

4.38 TST - Test
Syntax:
TST{<cond>} <Rn>, <shifter_operand>

RTL:
if(cond)

Rn AND shifter_operand

Flags updated:
N, Z, C

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 I 1 0 0 0 1 Rn Rd shifter operand

Usage and Examples:
The TST instruction performs a non-destructive AND (the result is not stored). The flags
are always updated. The most common use for this instruction is to determine the value
of an individual bit of a register.

TST R0, #0x8000 ;sets Z = the complement of R0[15]

Page 35

4.39 UMLAL – Unsigned Multiply-Accumulate Long
Syntax:
UMLAL{<cond>}{S} <Rd_LSW>, <Rd_MSW>, <Rm>, <Rs>

RTL:
if(cond)

Rd_MSW:Rd_LSW Rd_MSW:Rd_LSW + (Rs • Rm)

Flags updated if S used:
N, Z (V, C are unpredictable)

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 1 S Rd_MSW Rd_LSW Rs 1 0 0 1 Rm

Usage and Examples:
UMLAL performs an unsigned 32x32 multiply operation with a 64-bit accumulation. The
product of Rm and Rs is added to the 64-bit unsigned value contained in the register
pair Rd_MSW:Rd_LSW. All values are interpreted as unsigned binary.
The instruction below adds the product of R2 and R3 to the 64-bit number stored in
R1:0.

UMLAL R0, R1, R2, R3

4.40 UMULL – Unsigned Multiply Long
Syntax:
UMULL{<cond>}{S} <Rd_LSW>, <Rd_MSW>, <Rm>, <Rs>

RTL:
if(cond)

Rd_MSW:Rd_LSW Rs • Rm

Flags updated if S used:
N, Z (V, C are unpredictable)

Encoding:
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond 0 0 0 0 1 0 0 S Rd_MSW Rd_LSW Rs 1 0 0 1 Rm

Usage and Examples:
UMULL performs an unsigned 32x32 multiply operation. The product of Rm and Rs is
stored as a 64-bit unsigned value in the register pair Rd_MSW:Rd_LSW. All values are
interpreted as unsigned binary.
The instruction below stores the product of R2 and R3 as a 64-bit number in R1:0.

UMULL R0, R1, R2, R3

Page 36

5 Pseudo-Instructions

5.1 ADR – Load Address (short-range)
Syntax:
ADR{cond} <Rd>, <label>

Description:
The ADR pseudo-instruction assembles to a single ADD or SUB instruction, normally
with the PC as an operand. This produces position-independent code. The assembler
will report an error if it cannot create a valid instruction to load the address. If the label
is program-relative, it must be in the same assembler area as the ADR instruction. (The
ADRL pseudo-instruction can reach a wider address range.)

5.2 ADRL – Load Address (medium-range)
Syntax:
ADRL{cond} <Rd>, <label>

Description:
The ADRL pseudo-instruction will always generate a two-instruction sequence to load
the address of the given label into the destination register, giving it a wider target
range than the ADR instruction. The code is position-independent. The assembler will
report an error if it cannot create a valid instruction sequence. (The LDR pseudo-
instruction with a label argument can reach any address.)

5.3 ASR – Arithmetic Shift Right
Syntax:
ASR{cond}{S} <Rd>, <Rm>, <Rs>
ASR{cond}{S} <Rd>, <Rm>, <#shift_count>

Description:
ASR is a synonym for the MOV instruction with an ASR-shifted register operand. If an
immediate shift count is used, it is limited to the range 1-32. If Rm is not included, the
assembler will assume it is the same as Rd.

ASR R0, R1 is equivalent to MOV R0, R0, ASR R1
ASR R0, R1, R2 is equivalent to MOV R0, R1, ASR R2

Page 37

5.4 LDR – Load Register
Syntax:
LDR{cond} <Rd>, =<expression>
LDR{cond} <Rd>, =<label-expression>

Description:
The LDR pseudo-instruction will generate an instruction to load the destination register
with the desired value.
The <expression> field must evaluate to a numeric constant. If the constant is an
allowable immediate expression (or the complement of one), a MOV or MVN instruction
will be generated. If it is not, the assembler will place the value in a memory location,
and generate a PC-relative load instruction to load it from that memory location.
If a label is specified, the assembler will generate a local memory location to store the
label address, and include the appropriate linker directives so that the correct address
will be in that location after linking.

5.5 LSL – Logical Shift Left
Syntax:
LSL{cond}{S} <Rd>, <Rm>, <Rs>
LSL{cond}{S} <Rd>, <Rm>, <#shift_count>

Description:
LSL is a synonym for the MOV instruction with an LSL shifter operand. If an immediate
shift count is used, it is limited to the range 0-31. If Rm is not included, the assembler
will assume it is the same as Rd.

LSL R0, R1 is equivalent to MOV R0, R0, LSL R1
LSL R0, R1, R2 is equivalent to MOV R0, R1, LSL R2

5.6 LSR – Logical Shift Right
Syntax:
LSR{cond}{S} <Rd>, <Rm>, <Rs>
LSR{cond}{S} <Rd>, <Rm>, <#shift_count>

Description:
LSR is a synonym for the MOV instruction with an LSR shifter operand. If an immediate
shift count is used, it is limited to the range 1-32. If Rm is not included, the assembler
will assume it is the same as Rd.

LSR R0, R1 is equivalent to MOV R0, R0, LSR R1
LSR R0, R1, R2 is equivalent to MOV R0, R1, LSR R2

Page 38

5.7 NOP – No Operation
Syntax:
NOP

Description:
There are numerous ways to encode a NOP (no operation) instruction for the
ARM7TDMI processor, such as adding 0 to a register, ORing a register with 0,
branching to the next instruction, etc. The actual encoding of the NOP is assembler-
dependent.

5.8 POP - Pop
Syntax:
POP{cond} reg_list

Description:
POP is a pseudonym for the LDMIA instruction, with R13! specified for the base register
(Rn). The PUSH/POP instructions assume a full-descending (FD) stack organization.

5.9 PUSH - Push
Syntax:
PUSH{cond} reg_list

Description:
PUSH is a pseudonym for the STMDB instruction, with R13! specified for the base
register (Rn). The PUSH/POP instructions assume a full-descending (FD) stack
organization.

5.10 ROR – Rotate Right
Syntax:
ROR{cond}{S} <Rd>, <Rm>, <Rs>
ROR{cond}{S} <Rd>, <Rm>, <#shift_count>
Description:
ROR is a synonym for the MOV instruction with an ROR shifter operand. If an
immediate shift count is used, it is limited to the range 1-31. If Rm is not included, the
assembler will assume it is the same as Rd.

ROR R0, R1 is equivalent to MOV R0, R0, ROR R1
ROR R0, R1, R2 is equivalent to MOV R0, R1, ROR R2

Page 39

5.11 RRX – Rotate Right with Extend
Syntax:
RRX{cond}{S} <Rd>, <Rm>
Description:
RRX is a synonym for the MOV instruction with an RRX shifter operand. If Rm is not
included, the assembler will assume it is the same as Rd.

RRX R0 is equivalent to MOV R0, R0, RRX
RRX R0, R1 is equivalent to MOV R0, R1, RRX

