ARM7TDMI
INnstruction Set
Reference

Table of Contents

gty u U oa A Te] ol =1 o ToloTe 10T IR U PPR PP PPTR 1
1.1 ARMTZTDMI — ARM INSTIUCTIONS ...uuieitieeite e et e et e e et e et e e e et e e et e e e et e e e et ee e et e e eaa e e eaaeeeaaa e e eesaaneaesnnaaeanneeasneesnnns 1
1.2 ARMT7ZTDMI — THUMB INSIIUCHIONSeeuieiti e ete e et e et e et e e et e e et e e et e e e et e e et eeeaa e e e aa e e eaaa e seaaaeesanneeasneessneesnnes 2

(0o g Te [y u oY g = 1IN =h =T ot U | o o T PPN PTR 2
2.1 (00 g0 11T T =1 o
2.2 Condition Codes

Addressing, OpPerands anNd DIFECTIVES ittt et et e et et e e e ea e et e e aa e aeeaaaeenaeenaeenaaennne 3
3.1 GBINETAI INOTES ...ttt 3
3.2 Shifter Operands..............eevvveeeeeeennnnnnnee .3
3.3 Load/Store Register Addressing Modes............ ..6
3.4 Miscellaneous Load/Store Addressing Modes.... .. 8
3.5 Memory Allocation and Operand AlIGNMENT. ettt e e e ettt e e e e eeeaaa e e eeeeesaaa e eaaeeesaanaeaaaenees 9
3.6 Miscellaneous ASSEMDBIET DIFECTIVEScooiiiiiiiiiiii ittt ettt e e et ettt e et e e eeeeeeeeeeees 10

Instruction Descriptions....................

4.1 General Information.......

4.2 ADC — Add with Carry .
4.3 LA 0 Vo Lo PRSP PUPPRPPPRPIRE
4.4 AND — BIt-WISE ANDiiiiiiiiie et e et e e e e et e e e e e et e r e e e e e e e aannnne
4.5 B, BL — Branch, Branch and Link . .
4.6 BIC — Bt CIBANttt et e e e e e e e aaeaaes
4.7 BX — Branch @nd EXCRANQEottt ettt e e ettt e e e e e e eaba e e e e e e eetaa e e e e e e e eeean e e eaeeeenn e aaan
4.8 CMN — COMPAIE NEGALIVE ... eeeeeeeiiee e e e e ettt e e e eeeetta e e e eaeeeaeea e eeeeeasennaaeeeeessannaeeseesssnnnaaeeeeeeeessnnnneaeesesnnnnaeaaeennen
4.9 [0 00 44T PP PPSPPPPION
4.10 EOR - Bit-wise Exclusive-OR. .
4.11 LDM — LOAA MUIIPIE..... ettt ettt e ettt e e e e ettt et e e e e et ee s b e e e e e eeeaaa e e e e e eeesnaa e e eeeeeaeeennnnanaaaas
4.12 [S =T I =T 1) =Y S SII
4.13 LDRB — Load Register Byte.......

4.14 LDRH — Load Register Halfword

4.15 LDRSB — Load Register Signed Byte
4.16 LDRSH — Load Register Signed HalfWOITuiiiiriiiiiiie e e e e et e e e e e e et e e e e e eeaeeeanna e e e eeeennnnnaaaaaes 21
4.17 MLA — MUIIPIY-ACCUMUIAEE ...ttt ettt ettt et e e e ettt e e eeeeeeeeeeeenes 22
4.18 MOV = MOVE ...evieeeeiiiiiiieeee et .22

4.19 MRS — Move PSR into General-Purpose Register..
4.20 MSR — Move to Status Register from ARM Register

4.21 L LS U o] PP PPPPPPPPPPPPPPPPIRE
4.22 IMVN — MOVE NEGALIVE ... eeeeeteie ettt ettt e oo e ettt b s e e e ettt etk e e e e et e e s b e e e e e e e s b aan e e e e e e eeeea e e e eeennnnnaaeeaas
4.23 ORR - Bit-wise Inclusive-OR.
4.24 RSB — REVEISE SUDLIACT......cciiiiiiiiiiiii ittt naebe e e e e eeee
4.25 (R O oY= YIS W o] = Ut AT/ T O U S 26
4.26 SBC — Subtract with Carryccccccceeieeeeeenns .27
4.27 SMLAL — Signed Multiply-Accumulate Long27
4.28 SMULL - Signed Multiply Longceeeeeeeee28
4.29 STM — STOTE MUILIPIE ...ttt e et e oo e e ettt e e e e et eeaa e e e e e e eeaaa e e e e eeeeaaea e e e e eeeean e e aaeeensnnaaeaaeennen 28
4.30 LRI () (= LT | =T PSPPI 30
4.31 STRB — Store Register Byte30
4.32 STRH — Store Register Halfword..
4.33 SUB - Subtract.............eeeeeeeeee.
4.34 SWI — Software Interrupt
4.35 AT = o PRSPPI
4.36 SWPB — Swap Byte
4.37 TEQ — TEST EQUIVAIBNCE ettt e oo ettt et e e e e e e et e ba e e e e e ee e s ba e e e e e eeeaba e e aeeeeeanaeeaaeaaaeenes 34
4.38 ST =) S PRSP 34
4.39 UMLAL — Unsigned MUItiply-ACCUMUIATE LONGuuieeieiiiiie e ettt e e ettt e e e e e eett e e e et ees b e s e e e eeesnaesa e e e eaeeeranaaaaaas 35
4.40 UMULL — UNSIgNed MUILIPIY LONQ ...eeiiiie ettt ettt e ettt s e e e e e et e e e e e e e eeaba e e e e e e eeeeeesnaaeeaeeeennnnnaaaaas 35
Pseudo-Instructions
5.1 Pa\D] e Mo To Yo (o [Tt] g o] o o =T g To =) IO PRPPPPPPP 36
5.2 ADRL — Load Address (MEQIUM-TANGE)uuuuieeieettnieeeee ettt e e e e e eeee s e e e e eeeee e e e e e eease e e e e e eeesaa e e e eseeeeennna e e eeeennnnaans 36
5.3 ASR — Arithmetic Shift Right36

5.4 LDR — Load Register....... .
55 LSL — Logical Shift Left...... .37
5.6 LSR — Logical SHIft RIGNT.......coiiiiiiiiiii ettt ettt ettt ettt et et e eeeeeeeeeeeeeeeeees 37
5.7 N0 o @ o 1= = 11T PSP PTPOPPPPRPTRPPR 38
5.8

5.9

5.10
5.11

1 Instruction Encoding

1.1 ARM7TDMI — ARM Instructions
The ARM7TDMI uses a fixed-length, 32-bit instruction encoding scheme for all ARM instructions. The basic encoding for all
ARMT7TDMI instructions is shown below. Individual instruction descriptions and encodings are shown in section 4 of this document.

31(30(29|28|27|26|25|24|23|22|21|20|19|18|17|16|15|14|13|12|11|10| 9|8 |7 |6|5|4|3|2|1]|0
Multiply (accumulate) cond 0|0|0|0|0|0O|A|S Rd Rn Rs 1/0(0]|1 Rm
Multiply (accumulate) long cond 0O|0|0|O0|1|U|A|S| RAd_MSW | Rd_LSW Rn 1/0(0]|1 Rm
Branch and exchange cond ojojoj1jojo0|1|0|1|1|2|2j1j1j1j1j1j1j1j12j0j0j0|12 Rn
Single data swap cond 0|0|0|1]|0|B|0O]|O Rn Rd 0(0|0|0]|1]|0|0]|1 Rm
Halfword data transfer, register offsetf cond O(0O|O|P|U|IOW|L Rn Rd 0(0|0|0]|1]|0|1]|1 Rm
Halfword data transfer, immediate offsetf cond 0|0|0(P|U|L1W|L Rn Rd offset 1/0(1]|1 offset
Signed data transfer (byte/halfword) cond 0|0|0|P|U|B|W|L Rn Rd addr_mode|1|1|H|1|addr_mode
Data processing and PSR transfer] cond ool opcode |S Rn Rd operand2
Load/store register/unsigned byte cond O(1(I|P|U|IB|W|L Rn Rd addr_mode
Undefined] cond 0|1|1 1
Block data transfer] cond 1{0|{0|P|U|O0|W|L Rn register list
Branch cond 1/0(1]|L offset
Coprocessor data transfer] cond 1{1{0|P|U|N|W|L Rn CRd CP# offset
Coprocessor data operation cond 1{1|{1|0| CPopcode CRn CRd CP# CpP 0 CRm
Coprocessor register transfer] cond 1{1{1|0|CPopc|L CRn Rd CP# CP 1 CRm
Software interrupt, cond 1{1]|1]1 ignored by processor

Page 1

1.2 ARM7TDMI — THUMB Instructions

The ARM7TDMI uses a fixed-length, 16-bit instruction encoding scheme for all Thumb
instructions. The Thumb instruction set is a subset of the ARM instruction set, and is intended to
permit a higher code density (smaller memory requirement) than the ARM instruction set in
many applications. The processor executes in Thumb mode when bit 5 of the CPSR is 1.
Exception processing is always done in ARM mode; the processor automatically switches to
ARM mode when entering an exception mode. Use of the Thumb instruction set will not be
required in ECE 353/315, and so is not covered here.

Conditional Execution

2.1 Condition Field

All ARM7TDMI instructions can be executed conditionally, based on a 4-bit condition field in
the instruction. The processor tests the state of the condition flags in the CPSR (N, Z, V, C), and
if the condition flag state matches the condition, the instruction executes normally. If the
condition flag state does not match the condition, the instruction is executed as a NOP (no
operation).

2.2 Condition Codes
The condition codes and use are shown below. If the condition is omitted in instructions, the AL
(always) condition is used to specify that the instruction should always execute.

Opcode | Mnemonic

[31:28] | Extension | Meaning Condition flag state
0000 EQ Equal ==
0001 NE Not equal Z==0
0010 CS/HS Carry set / unsigned higher or same | C==1
0011 CC/LO Carry clear / unsigned lower C==
0100 MI Minus / negative N==1
0101 PL Plus / positive or zero N==0
0110 VS Overflow V==
0111 VC No overflow V==
1000 HI Unsigned higher (C==1) AND (Z==0)
1001 LS Unsigned lower or same (C==0) OR (z==1)
1010 GE Signed greater than or equal N ==
1011 LT Signed less than NI=V
1100 GT Signed greater than (Z==0) AND (N==V)
1101 LE Signed less than or equal (Z==1) OR (NI=V)
1110 AL Always (unconditional) Not applicable
1111 (NV) Never Obsolete, unpredictable in ARM7TDMI

Page 2

3 Addressing, Operands and Directives

3.1 General Notes
In general, using R15 (PC) as the destination register is not appropriate for most
instructions. Many instructions will have unpredictable behavior if R15 is the destination.

The ARM supports instruction set extensions by reserving certain bit combinations in
the operand fields of otherwise valid instructions. The assembler will ensure that these
bit combinations are not used, but these must be avoided when hand-coding
instructions.

The notation SBZ means “should be zeros”, SBO means “should be ones”.

3.2 Shifter Operands

The shifter operand is represented by the least-significant 12 bits of the instruction. It
can take one of eleven forms, as listed below. For illustration, each form has one or
more examples based on the Compare instruction (CMP <Rn>, <shifter_operand>). For
instructions that use shifter operands, the C flag update is dependent on the form of
the operand used.

3.2.1 Immediate Operands

Immediate values are signified by a leading # symbol. The operand is actually stored in
the instruction as an 8-bit value with a 4-bit rotation code. The resultant value is the 8-
bit value rotated right 0-30 bits (twice the rotation code amount), as illustrated below.
Only values that can be represented in this form can be encoded as immediate
operands.

31 87 0

immed_38
rotate_imm * 2 _‘

The assembler will make substitutions of comparable instructions if it makes it possible
to create the desired immediate operand. For example, CMP RO, #-1 is not a legal
instruction since it is not possible to specify -1 (OXFFFFFFFF) as an immediate value, but
it can be replaced by CMN RO, #1. If the rotate value is non-zero, the C flag is set to bit
31 of the immediate value, otherwise it is unchanged.

Syntax: #<immediate>
Example: CMP RO, #7
Encoding:

11[10]9]8|7]6]5]4]3]2]1]0
rotate_imm immediate 8

Page 3

3.2.2 Register Operands

The register value is used directly. The C flag is unchanged. Note that this is actually a
form of the Register Operand, Logical Shift Left by Immediate option (see below) with a
0-bit shift.

Syntax: <Rm>
Example: CMP RO, R1
Encoding:

11]10]9]8]7]6]5]4] 3]2]1]0
0] 0|0]0|O0O]0O]|]0O]O Rm

3.2.3 Register Operand, Logical Shift Left by Immediate

The register value is shifted left by an immediate value in the range 0-31. Note that a
shift of zero is identical to the encoding for a register operand with no shift. The C flag
will be updated with the last value shifted out of Rm unless the shift count is O.

Syntax: <Rm>, LSL #<immediate>
Example: CMP RO, R1, LSL #7
Encoding:

11]10]9]8]7]6]5]4] 3]2]1]0
shift imm 0|00 Rm

3.2.4 Register Operand, Logical Shift Left by Register
The register value is shifted left by a value contained in a register. The C flag will be
updated with the last value shifted out of Rm unless the value in Rs is 0.

Syntax: <Rm>, LSL <Rs>
Example: CMP RO, R1, LSL R2
Encoding:

11/10]9]8]7]6|5]4]3]2]1]0
Rs 0/0]0]1 Rm

3.2.5 Register Operand, Logical Shift Right by Immediate
The register value is shifted right by an immediate value in the range 1-32. The C flag
will be updated with the last value shifted out of Rm.

Syntax: <Rm>, LSR #<immediate>
Example: CMP RO, R1, LSR #7
Encoding:

11]10]9]8]7]6]5]a] 3 J]2[1]0
shift imm 0/1]0 Rm

Page 4

3.2.6 Register Operand, Logical Shift Right by Register
The register value is shifted right by a value contained in a register. The C flag will be
updated with the last value shifted out of Rm unless the value in Rs is 0.

Syntax: <Rm>, LSR <Rs>
Example: CMP RO, R1, LSR R2
Encoding:
11[10]9]8|7]|6|5]4]3]2]1]0
Rs 0/0]1]1 Rm

3.2.7 Register Operand, Arithmetic Shift Right by Immediate

The register value is arithmetically shifted right by an immediate value in the range 1-
32. The arithmetic shift fills from the left with the sign bit, preserving the sign of the
number. The C flag will be updated with the last value shifted out of Rm.

Syntax: <Rm>, ASR #<immediate>
Example: CMP RO, R1, ASR #7
Encoding:
11[10]9]8]7]|6|5]4] 3]2]1]0
shift_imm 1]0]0 Rm

3.2.8 Register Operand, Arithmetic Shift Right by Register

The register value is arithmetically shifted right by a value contained in a register. The
arithmetic shift fills from the left with the sign bit, preserving the sign of the number.
The C flag will be updated with the last value shifted out of Rm unless the value in Rs is
0.

Syntax: <Rm>, ASR <Rs>
Example: CMP RO, R1, ASR R2
Encoding:
11/10]9]8]7]6|5]4]3]2]1]0
Rs 0j]1]0]1 Rm

3.2.9 Register Operand, Rotate Right by Immediate

The register value is rotated right by an immediate value in the range 1-31. [A rotate
value of 0 in this instruction encoding will cause an RRX operation to be performed.]
The C flag will be updated with the last value shifted out of Rm.

Syntax: <Rm>, ROR #<immediate>
Example: CMP RO, R1, ROR #7
Encoding:
11/10]9]8]7]6]l5]4] 3]2]1]0
shift_imm 1]1]0 Rm

Page 5

3.2.10 Register Operand, Rotate Right by Register
The register value is rotated right by a value contained in a register. The C flag will be
updated with the last value shifted out of Rm unless the value in Rs is 0.

Syntax: <Rm>, ROR <Rs>
Example: CMP RO, R1, ROR R2
Encoding:
11[10]9]8|7]|6|5]4]3]2]1]0
Rs 0]1]1]1 Rm
3.2.11 Register Operand, Rotate Right with Extend

The register value is rotated right by one bit through the C flag, i.e. C&Rm[0],
Rm[31]<C, Rm[30]<Rm[29], etc.

Syntax: <Rm>, RRX
Example: CMP RO, R1, RRX
Encoding:

11[10]9|8|7]|6|5]4] 3]2]1]0
olojojojoj1]1]0 Rm

3.3 Load/Store Register Addressing Modes

There are nine options that can be specified for the addressing mode, as listed below.
All options include a base register. See the ARM Architecture Reference Manual section
5.2 for more detailed information.

Note that the ARM processor does not support a direct addressing mode for load/store
operation. (Direct addressing is where the address is encoded in the instruction.)
However, a label (i.e. a memory location name) can be specified as the memory
address in a load/store instruction. In this case, the assembler will attempt to reach the
label using the “base register with immediate offset” mode, using the PC as the base
register and computing the required offset.

3.3.1 Base register with immediate offset
[Rn, #+/-<offset12>]
memory_address = Rn +/- offset12
Rn is unchanged after instruction

3.3.2 Base register with register offset
[Rn, +/-<Rm>]
memory_address = Rn +/- Rm
Rn is unchanged after instruction

Page 6

3.3.3 Base register with shifted register offset
[Rn, +/-<Rm>, <shift> #<shift_immediate>]
memory_address = Rn +/- shifted_Rm (see below)
Rn is unchanged after instruction

3.3.4 Base register with immediate offset, pre-indexed
[Rn, #+/-<offset12>]!
memory_address = Rn +/- offset12
Rn = memory_address after instruction

3.3.5 Base register with register offset, pre-indexed
[Rn, +/-<Rm>]!
memory_address = Rn +/- Rm
Rn = memory_address after instruction

3.3.6 Base register with shifted register offset, pre-indexed
[Rn, +/-<Rm>, <shift> #<shift_immediate>]!
memory_address = Rn +/- shifted_Rm (see below)
Rn = memory_address after instruction

3.3.7 Base register with immediate offset, post-indexed
[Rn], #+/-<offsetl2>
memory_address = Rn
Rn = Rn +/- offset12 after instruction

3.3.8 Base register with register offset, post-indexed
[Rn], +/-<Rm>
memory_address = Rn
Rn = Rn +/- Rm after instruction

3.3.9 Base register with shifted register offset, post-indexed
[Rn], +/-<Rm>, <shift> #<shift_immediate>
memory_address = Rn
Rn = Rn +/- shifted_Rm after instruction (see below)

The shifted register offset modes are specified in the same manner as other shifter
operands, where the <shift> #<shift_immediate> fields can be one of the below.

Logical shift left - LSL #0-31
Logical shift right - LSR #1-32
Arithmetic shift right - ASR #1-32
Rotate right - ROR #1-32

Rotate right with extend - RRX

Page 7

3.4 Miscellaneous Load/Store Addressing Modes

These options apply only to the LDRSB, LDRH, LDRSH, STRH instructions. There are six
options that can be specified for the addressing mode, as listed below. All options
include a base register. See the ARM Architecture Reference manual section 5.3 for
more detailed information.

Note that the ARM processor does not support a direct addressing mode for load/store
operation. (Direct addressing is where the address is encoded in the instruction.)
However, a label (i.e. a memory location nhame) can be specified as the memory
address. In this case, the assembler will attempt to reach the label using the base
register with immediate offset mode, using the PC as the base register and computing
the required offset.

3.4.1 Base register with immediate offset
[Rn, #+/-<offset8>]
memory_address = Rn +/- offset8
Rn is unchanged after instruction

3.4.2 Base register with register offset
[Rn, +/-<Rm>]
memory_address = Rn +/- Rm
Rn is unchanged after instruction

3.4.3 Base register with immediate offset, pre-indexed
[Rn, #+/-<offset8>]!
memory_address = Rn +/- offset8
Rn = memory_address after instruction

3.4.4 Base register with register offset, pre-indexed
[Rn, +/-<Rm>]!
memory_address = Rn +/- Rm
Rn = memory_address after instruction

3.4.5 Base register with immediate offset, post-indexed
[Rn], #+/-<offset8>
memory_address = Rn
Rn = Rn +/- offset8 after instruction

3.4.6 Base register with register offset, post-indexed
[Rn], +/-<Rm>
memory_address = Rn
Rn = Rn +/- Rm after instruction

Page 8

3.5 Memory Allocation and Operand Alignment
This section presents an abridged list of the most commonly used assembler directives.
Full documentation is available in the ARM Assembler manuals.

3.5.1 Literals

Literal substitutions are indicated with the EQU directives.

Syntax: name EQU expr {,type}

Description: The EQU directive informs the assembler to perform a literal substitution
whenever it encounters name in the source file, replacing it with expr. The expression
can be a numeric constant, a relative address, or an absolute address. If an absolute
address is specified, then the type field can be one of ARM, THUMB, CODE16, CODE32,
or DATA. (Note that only ARM or DATA are applicable to code written in ECE 353/315.)

3.5.2 Numeric Expressions

Numeric values can be expressed in a number of ways. The most common are;
Decimal — assumed if not otherwise qualified (i.e. 12345)

Hexadecimal — signified by a leading Ox (i.e. 0x12A3) or a leading & (i.e. &12A3)
Arbitrary radix — an arbitrary number base between 2 and 9 can be specified in the
form base_value (i.e. 2_10110110 represents the binary number 10110110).
Character constants — signified by a character in single quotes (i.e. ‘A")

3.5.3 String Expressions

String expressions are indicated by double quotes (i.e. “this is a string!”). To include a
double quote or dollar sign in the string, use two of the character in sequence (i.e.
“dollar sign = 3”. C string escape sequences are also supported (i.e. \n for a newline
character).

3.5.4 Memory Allocation Directives

ALIGN — Align

Syntax: ALIGN

Description: ALIGN with no arguments causes that location to be aligned on an
instruction (4-byte) boundary.

DCB — Allocate Byte

Syntax: {label} DCB expr {, expr}

Description: DCB allocates bytes of memory, and initializes them to the values given.
The expr fields can either be numeric constants and/or a quoted string. If DCB is
followed by a label that is a branch target, use the ALIGN directive to ensure that the
label is properly aligned.

DCD/DCDU — Allocate Words

Syntax: {label} DCD expr {, expr}

Description: DCD allocates words of memory, padding as necessary to ensure word-
alignment, and initializes them to the values given. The expr fields can either be

Page 9

numeric constants or program-relative expressions (i.e. labels). DCDU allocates without
ensuring alignment. If DCDU is followed by a label that is a branch target, use the
ALIGN directive to ensure that the label is properly aligned.

DCW/DCWU - Allocate Halfwords

Syntax: {label} DCW expr {, expr}

Description: DCW allocates halfwords of memory, padding as necessary to ensure
halfword-alignment, and initializes them to the values given. The expr fields must be
numeric constants in the range -32678 to +65535. DCWU allocates without ensuring
alignment. If DCW/DCWU is followed by a label that is a branch target, use the ALIGN
directive to ensure that the label is properly aligned.

SPACE — Allocate Memory Space

Syntax: {label} SPACE number_of bytes

Description: SPACE allocates the given number of zero-initialized bytes. If SPACE is
followed by a label that is a branch target, use the ALIGN directive to ensure that the
label is properly aligned.

3.5.5 Operand Alignment

In general, all memory accesses by the ARM7TDMI must be aligned. For a word (4-
byte) access, the target must be aligned on a 4-byte boundary. Halfwords must be
aligned on a 2-byte boundary.

3.6 Miscellaneous Assembler Directives

3.6.1 AREA — Area Directive

Syntax: AREA {section_name} {attr} {,attr}...

Description: The AREA directive establishes indivisible memory regions that are
manipulated by the linker. Key attribute fields include CODE (area includes only
instructions), DATA (area includes only data), READONLY (the default for CODE areas),
READWRITE (the default for DATA areas), NOINIT (must only contain uninitialized data
or data initialized to 0, the linker settings determine if initialization is actually done.)
When linking for the ADuC7026, the default behavior of the linker will place CODE areas
into flash memory and DATA areas into SRAM.

3.6.2 ARM — Use ARM Encoding

Syntax: ARM

Description: Informs the assembler to assemble instructions for ARM execution.
CODE32 is a synonym for ARM.

3.6.3 END — End of File

Syntax: END

Description: Informs the assembler that the end of the source file has been reached.
Every assembly language file must have an END directive.

Page 10

3.6.4 ENTRY — Code Entry Point

Syntax: ENTRY

Description: The ENTRY directive indicates the point in the code where program
execution should begin. There should be only ONE entry point per complete program.
Note that in developing the software for an embedded system, execution will begin at
the reset vector, so the code entry point will be determined by what code is linked at
that address and the ENTRY directive is not used.

3.6.5 EXPORT — Export

Syntax: EXPORT symbol

Description: Instructs the assembler to include the symbol description in the output file
so that it can be used by the linker to resolve external references.

3.6.6 EXTERN — External Symbol

Syntax: EXTERN symbol

Description: Informs the assembler that the symbol is defined in another source file. If
no reference is made to the symbol, it is not imported into the file.

3.6.7 GLOBAL — Global
Synonym for EXPORT.

3.6.8 INCLUDE — Include File

Syntax: INCLUDE filename

Description: The listed file is read in by the assembler as though it were part of the
source file before it proceeds to the next line in the source file. INCLUDES can be
nested.

3.6.9 IMPORT — Import

Syntax: IMPORT symbol

Description: Informs the assembler that the symbol is defined in another source file.
The symbol is imported whether it is referenced in the file or not.

3.6.10 KEEP — Keep Local Symbols

Syntax: KEEP {symbol}

Description: Forces the assembler to describe the symbol in its output file, so it will be
visible to the debugger. If symbol is blank, all local symbols are preserved. By default,
the ARM assembler only preserves symbols in the output file if they are EXPORTed or
require relocation.

Page 11

4 Instruction Descriptions

4.1 General Information

A number of ARM7TDMI instructions will not be used in conjunction with the ADuC7026
processor used in ECE 353 and ECE 315. These instructions are listed below, and do not
have detailed information in this section. Further information on these instructions can
be obtained from the ARM Architecture Reference Manual.

CDP — Coprocessor Data Processing

LDC — Load Coprocessor

LDRBT — Load Register Byte with Translation
LDRT — Load Register with Translation

MCR - Move to Coprocessor from ARM Register
MRC - Move to ARM Register from Coprocessor
STC - Store Coprocessor

STRBT - Store Register Byte with Translation
STRT - Store Register with Translation

4.2 ADC — Add with Carry
Syntax:
ADC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)
Rd < Rn + shifter_operand + C

Flags updated if S used:

N,Z,V,C

Encoding:

31]30[29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7]6]5]4][3]2]1]0
cond 0O|{Oojl1|0O]|21]0]|1]S Rn Rd shifter operand

Usage and Examples:
The ADC instruction is used to implement efficient multiword addition. For example, if
64-bit numbers are stored in R1:0 and R3:2, their sum can be stored in R5:4 as shown
below.

ADDS R4, R2, RO ;add least significant words

ADC R5, R3,R1 ;add most significant words plus carry

Page 12

4.3 ADD - Add

Syntax:

ADD{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd € Rn + shifter_operand

Flags updated if S used:

N, Z,V,C

Encoding:

31]30[29|28[27]|26]25]|24[23]|22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6]5]4[3]2]1]0
cond o|{ojl|oO]|1]0]|0O]S Rn Rd shifter operand

Usage and Examples:
ADDS RO, RO, #1
ADD RO, RO, RO, ASR #2

4.4 AND - Bit-wise AND

Syntax:

;increments RO, updates flags
;multiply RO by 1.25

AND{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd < Rn AND shifter_operand

Flags updated if S used:

N, Z, C

Encoding:

31|30[29|28[27]26]25|24[23[22]21]|20]19]18][17]16]15]14[13][12|11]10]9[8|7[6]5][4[3][2]1]0
cond o|ojl|0O]|O]0O]|O]S Rn Rd shifter operand

Usage and Examples:
AND RO, RO, #0x8000

:mask bit D15 of RO

Page 13

4.5 B, BL —Branch, Branch and Link
Syntax:
B{<cond>} <target address>, BL{<cond>} <target_address>

RTL:
if(cond)
if(L==1)
R14 < address of next instruction
PC & PC + (signed_immediate_24 << 2)

Flags updated:

None

Encoding:

31]30[29]|28[27]|26]25]|24]23][22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6][5]4[3]2]1]0
cond 1]0]1]|L signed _immediate 24

Usage and Examples:

The B/BL instructions are used to branch to a target address, based on an optional
condition. The BL instruction supports subroutine calls by storing the next instruction’s
address in R14, the link register. (The assembler defines LR as a pseudonym for R14.)
Since the offset value is a signed 24-bit value, the branch target must be within
approximately +/-32MB.

To return from a subroutine after using BL to call it, the preferred method is to use BX
LR. If the subroutine used the STM instruction to store a group of registers and the
return address on the stack (i.e. STMFD R13!, {RO-R5, LR}), then the return should be
executed in the complementary fashion by placing the saved link register value into the
PC (i.e. LDMFD R13!, {RO-R5, PC}).

Page 14

4.6 BIC—-BitClear

Syntax:

BIC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd < Rn AND NOT shifter_operand

Flags updated if S used:

N, Z

Encoding:

31]30[29|28[27]|26]25]|24[23]|22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6]5]4[3]2]1]0
cond o|{ojI|1]1]1]|0]Ss Rn Rd shifter operand

Usage and Examples:

BIC

RO, RO, #0x8000

:clears bit D15 of RO

4.7 BX - Branch and Exchange

Syntax:

BX{<cond>} <Rm>

RTL:
if(cond)

T flag €< Rm[O]

PC € Rm & OXFFFFFFFE

Flags updated:

None

Encoding:

31]30[29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7]|6]5]4[3]2]1]0
cond olojo|1]|o0]|0]|1]0 SBO SBO SBO 0/o0]|0]|1 Rm

Usage and Examples:
The BX instruction is used to branch to a target address stored in a register, based on
an optional condition. If bit O of the register is set to 1, then the processor will switch
to Thumb execution. (Bit 0 is forced to O in before the branch address is stored in the
PC.) The sample code below shows a call to a Thumb subroutine.
;get subroutine address
;set bit 1
;load link register with PC (this address + 8)

ADR RO, sub
ORR RO, #1
MOV LR, PC
BX RO

:branch to Thumb subroutine
:subroutine returns here

Page 15

4.8 CMN — Compare Negative

Syntax:

CMN{<cond>} <Rn>, <shifter_operand>

RTL:
if(cond)

Rn + shifter_operand

Flags updated:

N,Z, V,C

Encoding:

31]30[29]|28]27[26]25[24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7[6]5]4[3]2]1]0
cond o|ojlI|1]0]1|0]1 Rn Rd shifter operand

Usage and Examples:
The CMN instruction performs an addition of the operands (equivalent to a subtraction
of the negative), but does not store the result. The flags are always updated.

CMP RO, #1

;Z=1 if RO=-1, N=1 if RO<-1

4.9 CMP - Compare

Syntax:

CMP{<cond>} <Rn>, <shifter_operand>

RTL:
if(cond)

Rn - shifter_operand

Flags updated:

N,Z,V,C

Encoding:

31]30[29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7]6]5]4][3]2]1]0
cond o|ojlj1]0]1|0]12 Rn Rd shifter operand

Usage and Examples:
The CMP instruction performs a subtraction, but does not store the result. The flags are
always updated.

CMP RO, #1

;Z=1 if RO=1, N=0 if RO>1

Page 16

4.10 EOR — Bit-wise Exclusive-OR
Syntax:
EOR{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)
Rd < Rn XOR shifter_operand

Flags updated if S used:

N, Z, C

Encoding:

31]30[29|28[27]|26]25]|24[23]|22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6]5]4[3]2]1]0
cond 0O|O0|lI|0O]|0O]0O|1]S Rn Rd shifter operand

Usage and Examples:
EOR RO, RO, #0x8000 ;toggle bit D15 of RO

4.11 LDM — Load Multiple

There are three distinct variants of the LDM instruction. Two of them are for use in
conjunction with exception processing, and are not described here. Further information
can be obtained in the ARM Architecture Reference Manual.

Syntax:

LDM{<cond>}<addressing_mode>, <Rn>{!}, <registers>

RTL:

if(cond)
start_address €< Rn
fori=0to 14

if(register_list[i] == 1)

Ri €< memory[next_address]
if(register_list[15] == 1)
PC € memory[next_address] & OXFFFFFFFC
if(writeback)
Rn €< end_address
Flags updated:

None

Encoding:

31]30[29]|28[27]|26]25(|24]23]|22]21]20]19]18]17]16]15]14|13[12]11]10]9[8]7[6]5]4[3]2]1]0
cond 1/0|0|P|U|O|W]|1 Rn register_list

Page 17

Usage and Examples:
The LDM instruction permits block moves of memory to the registers and enables
efficient stack operations. The registers may be listed in any order, but the registers are
always loaded in order with the lowest numbered register getting the value form the
lowest memory address. If Rn is also listed in the register list and register writeback (W
bit) is set, the final value in Rn is unpredictable.
The addressing_mode field determines how next_address is calculated (bits P & W),
which control how the address is updated in conjunction with each register load. The
four addressing_mode values are;

elA - increment address by 4 after each load (post-increment)

¢IB - increment address by 4 before each load (pre-increment)

eDA - decrement address by 4 after each load (post-decrement)

eDB - decrement address by 4 before each load (pre-decrement)

The “I” following Rn controls the value of the writeback bit (bit W), and signifies that Rn
should be updated with the ending address at the end of the instruction. If the “I” is
not present (W=0), the value of Rn will be unchanged at the end of the instruction.

LDMIA R7, {RO, R2-R4} ;RO € memory[R7]
;R2 € memory[R7+4]
;R3 €< memory[R7+8]
;R4 &< memory[R7+12]
;R7 is unchanged

LDMDB R7!, {RO, R2-R4} :RO € memory[R7-16]
;R2 € memory[R7-12]
;R3 €< memory[R7-8]
;R4 &< memory[R7-4]
;R7 € R7 - 16

For use in conjunction with stack addressing, four alternative names can be used for
the addressing modes. These names are based on the type of stack being used instead
of the addressing mode being used. This eliminates confusion in coding stack push and
pop operations, since the type of stack will be the same for both the LDM and STM
instructions. In ARM syntax, a full stack is one where the stack pointer points to the last
used (full) location. An empty stack is one where the stack pointer points to the next
available (empty) stack location. As well, a stack can grow through increasing memory
addresses (ascending), or downward through decreasing memory addresses
(descending). The table below summarizes the stack addressing modes.

e FA (full ascending) - post-decrement (DA) on pop
oD (full descending) - post-increment (1A) on pop
eEA (empty ascending) - pre-decrement (DB) on pop
e¢ED (empty descending) - pre-increment on (IB) pop

Page 18

The instructions below demonstrate a push operation followed by a pop operation
assuming an empty-ascending stack. Note that by including the link register (R14) in
the push operation, and the PC in the pop operation, a subroutine will return to the
caller as part of the context save/restore.
STMEA R13!, {RO, R2-R3, LR} ;memory[R13] €< RO
;memory[R13+4] < R2
;memory[R13+8] < R3
;memory[R13+12] €« R14
;R13 € R13 + 16

LDMEA R13!, {RO, R2-R4, PC} ;RO € memory[R13-16]
;R2 € memory[R13-12]
;R3 € memory[R13-8]
;PC €< memory[R13-4]
;R13 €< R13 - 16

4.12 LDR — Load Register

Syntax:
LDR{<cond>} <Rd>, <addressing_mode>

RTL:

if(cond)
Rd €< memory[memory_address]
if(writeback)

Rn < end_address
Flags updated:

None

Encoding:

31]30[29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7]6]5]4][3]2]1]0
cond O[2]1|P|UJO[W]|2 Rn Rd addressing_mode

Usage and Examples:

The LDR instruction reads a word from memory and writes it to the destination register.
See the section Load/Store Register Addressing Modes for a description of the available
addressing modes.

LDR RO, [R1] ;RO = memory[R1]
If the memory address is not word-aligned, the value read is rotated right by 8 times

the value of bits [1:0] of the memory address. If R15 is specified as the destination, the
value is loaded from memory and written to the PC, effecting a branch.

Page 19

4.13 LDRB — Load Register Byte

Syntax:
LDRB{<cond>} <Rd>, <addressing_mode>

RTL:

if(cond)
Rd[7:0] € memory[memory_address], Rd[31:8] < O
if(writeback)

Rn < end_address
Flags updated:
None

Encoding:

31]30[29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7]6]5]4][3]2]1]0

cond O[2]1|PJUJ1[W|1 Rn Rd addressing_mode

Usage and Examples:
The LDRB instruction reads a byte from memory and zero-extends it into the

destination register. See the section Load/Store Register Addressing Modes for a

description of the available addressing modes.

LDRB RO, [R1] ;RO = memory[R1] (zero-extended)

4.14 LDRH — Load Register Halfword
Syntax:
LDRH{<cond>} <Rd>, <addressing_mode>

RTL:

if(cond)
Rd[15:0] € memory[memory_address], Rd[31:16] < O
if(writeback)

Rn < end_address
Flags updated:

None

Encoding:

31|30[29|28[27]26]25|24[23]22]21]|20]19]18][17]16]|15]14[13][12|11]10]9]8|7[6]5]4[3]2]1]0
cond O|0|O|P|UJIT[W]|1 Rn Rd addr mode |10 |11 |addr mode

Usage and Examples:

The LDRH instruction reads a halfword from memory, and zero-extends it to 32-bits in

the register. See the section Miscellaneous Load/Store Addressing Modes for a
description of the available addressing modes.

LDRH RO, [R1] ;RO = zero-extended memory[R1]

Page 20

4.15 LDRSB — Load Register Signed Byte

Syntax:

LDRSB{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

Rd[7:0] € memory[memory_address]
Rd[31:8] < Rd[7] (sign-extension)
if(writeback)

Rn €< end_address
Flags updated:

None

Encoding:

31[30[29]|28[27]|26]25]|24[23]22]21]20]19]18]17]16]15]14[13[12]11[10] 9] 8 3/2[1]0
cond O|0JO|P|UJIT[W]|1 Rn Rd addr_mode addr_mode

Usage and Examples:
The LDRSB instruction reads a byte from memory, and sign-extends it to 32-bits in the
register. See the section Miscellaneous Load/Store Addressing Modes for a description

of the available addressing modes.

LDRSB

RO, [R1]

;RO = sign-extended memory[R1]

4.16 LDRSH — Load Register Signed Halfword

Syntax:

LDRSH{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

Rd[15:0] € memory[memory_address], Rd[31:16] < Rd[15] (sign-extension)
if(writeback)

Rn €< end_address
Flags updated:

None

Encoding:

31]30[29]|28]27[26]25[24]23]22]21]20]19]18]17]16]15]14]13]12]11]10] 9] 8 3/2]1]0
cond 0O|0|O|P|U|I |W|1 Rn Rd addr_mode addr_mode

Usage and Examples:
The LDRSH instruction reads a halfword from memory, and sign-extends it to 32-bits in

the register. See the section Miscellaneous Load/Store Addressing Modes for a
description of the available addressing modes.

LDRSH

RO, [R1]

;RO = sign-extended memory[R1]

Page 21

4.17 MLA — Multiply-Accumulate

Syntax:

MLA{<cond>}{S} <Rd >, <Rm>, <Rs>, <Rn>

RTL:
if(cond)

Rd € Rn + (Rs « Rm)

Flags updated if S used:

N, Z (C is unpredictable)

Encoding:
31]30[29|28[27]|26]25]|24]23]|22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6[5]4[3]2]1]0
cond o/ojojo|o|0O[1]S Rd Rn Rs 1/0[0]1 Rm

Usage and Examples:
MLA performs a 32x32 multiply operation, then stores the sum of Rn and the 32-bit
multiplication result to Rd. Since only the least significant 32-bits of the multiplication
are used, the result is the same for signed and unsigned numbers.
The instruction below adds the product of R1 and R2 to RO.

RO, R1, R2, RO

MLA

4.18 MOV — Move

Syntax:

MOV{<cond>}{S} <Rd>, <shifter_operand>

RTL:
if(cond)

Rd < shifter_operand

if(S==1 and Rd==R15)
CPSR €« SPSR

Flags updated if S used and Rd is not R15 (PC):

N, Z, C

Encoding:

31]30[29|28[27]26]25]24[23][22]21]|20]19]18][17]16]15]14[13][12|11]10]9]8]7[6]5]4[3]2]1]0
cond oO|O|I|1]1]0]1]S SBZ Rd shifter operand

Usage and Examples:
MOQV performs a move to a register from another register or an immediate value.
;R1 <-RO * 4

MOV R1, RO, LSL #2

MOV R1, #1

;R1 <- 0x0000001
If the S bit is set and the destination is R15 (the PC), the SPSR is also copied to CPSR.
This form of the instruction used to return from an exception mode.

Page 22

4.19 MRS — Move PSR into General-Purpose Register

Syntax:

MRS{<cond>} <Rd >, CPSR
MRS{<cond>} <Rd >, SPSR

RTL:
if(cond)

Rd < CPSR/SPSR

Flags updated:

None

Encoding:

31]30[29]|28]27]|26]25]|24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7]6]5]4][3]2]1]0
cond 0|0[0|1]|0|R|O]O SBO Rd SBO

Usage and Examples:
Moves the value of CPSR or the current SPSR into a general-purpose register.

MRS

RO, CPSR

4.20 MSR — Move to Status Register from ARM Register

Syntax:

MSR{<cond>} CPSR_<fields>, #<immediate>
MSR{<cond>} CPSR_<fields>, <Rm>
MSR{<cond>} SPSR_<fields>, #<immediate>
MSR{<cond>} SPSR_<fields>, <Rm>

RTL:
if(cond)

CPSR/SPSR < immediate/register value

Flags updated:

N/A

Encoding:

31]30[29]|28[27]|26]25]|24]23]22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6]5]4[3]2]1]0
cond O0|0|1|1|0|R|[1]|0] field mask SBO rotate_imm immediate
cond ololol1]o[R]|1]0] field mask SBO SBZ olo[o]o] Rm

Usage and Examples:
Moves the value of a register or immediate operand into the CPSR or the current SPSR.
This instruction is typically used by supervisory mode code. Further details on this

instruction can be found in the ARM Architecture Reference Manual.

Page 23

The <fields> indicate which fields of the CPSR/SPSR be written to should be allowed to
be changed. This limits any changes just to the fields intended by the programmer. The

allowed fields are;

c sets the control field mask bit (bit 16)

X sets the extension field mask bit (bit 17)
S sets the status field mask bit (bit 18)

f sets the flags field mask bit (bit 19)

One or more fields may be specified.

4.21 MUL — Multiply
Syntax:
MUL{<cond>}{S} <Rd >, <Rm>, <Rs>

RTL:
if(cond)
Rd € Rs « Rm

Flags updated if S used:
N, Z (C is unpredictable)

Encoding:
31]30[29]|28[27]26]25]|24]23]22]21]20]19]18]17]16]15]14]13][12]11][10] 9] 8 3/2]1]0
cond olojo|o|o|0|O]S Rd SBZ Rs Rm

Usage and Examples:

MUL performs a 32x32 multiply operation, and stores a 32-bit result. Since only the
least significant 32-bits are stored, the result is the same for signed and unsigned

numbers.

The instruction below stores the product of R1 and R2 to RO.

MUL RO, R1, R2

Page 24

4.22 MVN — Move Negative

Syntax:

MVN{<cond>}{S} <Rd>, <shifter_operand>

RTL:
if(cond)

Rd < NOT shifter_operand
if(S==1 and Rd==R15)
CPSR < SPSR

Flags updated if S used and Rd is not R15 (PC):

N, Z, C

Encoding:

31]30[29]|28[27]|26]25]|24]23]|22]21]20]19]18]17]16]15]14|13[12]11]10]9[8]7[6]5]4[3]2]1]0
cond o|{ojIj1j2j1|1]s SBZ Rd shifter operand

Usage and Examples:
MVN complements the value of a register or an immediate value and stores it in the

destination register.
MVN R1, RO, LSL #2

MVN R1, #1

;R1 <- NOT (RO * 4)

;R1 <- OXFFFFFFFE

If the S bit is set and the destination is R15 (the PC), the SPSR is also copied to CPSR.
This form of the instruction used to return from an exception mode.

4.23 ORR — Bit-wise Inclusive-OR

Syntax:

ORR{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd < Rn OR shifter_operand

Flags updated if S used:

N, Z, C

Encoding:

31]30]29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7]6]5]4][3]2]1]0
cond O|OojI|1]12]0]|0]|S Rn Rd shifter operand

Usage and Examples:
RO, RO, #0x8000

OR

:sets bit D15 of RO

Page 25

4.24 RSB — Reverse Subtract

Syntax:

RSB{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd < shifter_operand - Rn

Flags updated if S used:

N, Z,V,C

Encoding:

31]30[29|28[27]|26]25]|24[23]|22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6]5]4[3]2]1]0
cond o|ojlI|0O]|O]J1]|1]Ss Rn Rd shifter operand

Usage and Examples:
RSB RO, RO, #0
RSB RO, RO, RO, LSL #3
Note that the carry flag (C) is the complement of a borrow flag. If a borrow is required
by the operation, C will be set to 0.

;negate RO (2's complement)

;multiply RO by 7

4.25 RSC — Reverse Subtract with Carry

Syntax:

RSC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd < shifter_operand — Rn — NOT C

Flags updated if S used:

N, Z,V,C

Encoding:

31]30[29]|28[27]|26]25]|24]23]|22]21]20]19]18]17]16]15]14|13[12]11]10]9[8]7[6]5]4[3]2]1]0
cond o|{ojljoja1j1j1]s Rn Rd shifter operand

Usage and Examples:
If a 64-bit number is stored in R1:0, it can be negated (2's complement) as shown

below.

RSCS RO, RO, #0
RSC R1,R1, #0

;negate least significant word

;negate most significant words minus borrow
Note that the carry flag (C) is the complement of a borrow flag. If a borrow is required
by the operation, C will be set to 0.

Page 26

4.26 SBC — Subtract with Carry
Syntax:
SBC{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)
Rd < Rn - shifter_operand — NOT C

Flags updated if S used:

N,Z,V,C

Encoding:

31]30]29|28[27]26]25]24]23][22]21[20]19]18][17]16]15]14[13]12]11]10] 9[8[7[6]5]4[3]2]1]0
cond o|{ojljoja1j1joJs Rn Rd shifter operand

Usage and Examples:
The SUB instruction is used to implement efficient multiword subtraction. For example,
if 64-bit numbers are stored in R1:0 and R3:2, their difference can be stored in R5:4 as
shown below.

SUBS R4, R2, RO ;subtract least significant words

SUB R5,R3,R1 ;subtract most significant words minus borrow
Note that the carry flag (C) is the complement of a borrow flag. If a borrow is required
by the operation, C will be set to 0.

4.27 SMLAL — Signed Multiply-Accumulate Long
Syntax:
SMLAL{<cond>}{S} <Rd_LSW>, <Rd_MSW=>, <Rm>, <Rs>

RTL:
if(cond)
Rd_MSW:Rd_LSW <« Rd_MSW:Rd_LSW + (Rs « Rm)

Flags updated if S used:
N, Z (V, C are unpredictable)

Encoding:
31]30[29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7][6]5]4[3]2]1]0
cond 0/o0/o0]|O0]1[2[1]S| Rd MSW Rd LSW Rs 1/0/0]1 Rm

Usage and Examples:
SMLAL performs a signed 32x32 multiply operation with a 64-bit accumulation. The
product of Rm and Rs is added to the 64-bit signed value contained in the register pair
Rd_MSW:Rd_LSW. All values are interpreted as 2’s-complement.
The instruction below adds the product of R2 and R3 to the 64-bit number stored in
R1:0.

SMLAL RO, R1, R2, R3

Page 27

4.28 SMULL — Signed Multiply Long
Syntax:
SMULL{<cond>}{S} <Rd_LSW>, <Rd_MSW=>, <Rm>, <Rs>

RTL:
if(cond)
Rd_MSW:Rd_LSW € Rs « Rm

Flags updated if S used:
N, Z (V, C are unpredictable)

Encoding:
31]30[29|28[27]|26]25]|24]23]|22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6[5]4[3]2]1]0
cond 0/o/o]0[1[2][0|S| Rd MSW Rd_LSW Rs 1/0[0]1 Rm

Usage and Examples:

SMULL performs a signed 32x32 multiply operation. The product of Rm and Rs is stored

as a 64-bit signed value in the register pair Rd_MSW:Rd_LSW. All values are interpreted

as 2's-complement.

The instruction below stores the product of R2 and R3 as a 64-bit number in R1:0.
SMULL RO, R1, R2, R3

4.29 STM — Store Multiple

There are two distinct variants of the STM instruction. One of them is for use in
conyjunction with exception processing, and is not described here. Further information
can be obtained in the ARM Architecture Reference Manual.

Syntax:

STM{<cond>}<addressing_mode>, <Rn>{!}, <registers>

RTL:

if(cond)
start_address < Rn
fori=01to 15

if(register_list[i] == 1)
memory[next_address] < Ri
if(writeback)
Rn < end_address
Flags updated:

None

Encoding:

31]30][29|28[27]26]25]24[23][22]21]|20]19]18[17]16]15]14[13][12]11]10]9]8]7[6]5][4[3]2]1]0
cond 1/0|0|P|U|O|W]|O Rn register_list

Page 28

Usage and Examples:
The STM instruction permits block moves of registers to memory and enables efficient
stack operations. The registers may be listed in any order, but the registers are always
stored in order with the lowest numbered register going to the lowest memory address.
If Rn is also listed in the register list and register writeback (W bit) is set, the final value
stored for Rn can be unpredictable.
The addressing_mode field determines how next_address is calculated (bits P & W),
which control how the address is updated in conjunction with each register store. The
four addressing_mode values are;

elA - increment address by 4 after each load (post-increment)

¢IB - increment address by 4 before each load (pre-increment)

eDA - decrement address by 4 after each load (post-decrement)

eDB - decrement address by 4 before each load (pre-decrement)

The “I” following Rn controls the value of the writeback bit (bit W), and signifies that Rn
should be updated with the ending address at the end of the instruction. If the “I” is
not present (W=0), the value of Rn will be unchanged at the end of the instruction.

STMIA R7, {RO, R2-R4} ;memory[R7] €< RO
;memory[R7+4] < R2
;memory[R7+8] < R3
;memory[R7+12] € R4
;R7 is unchanged

STMDB R7!, {RO, R2-R4} :memory[R7-16] € RO
;memory[R7-12] €« R2
;memory[R7-8] < R3
;memory[R7-4] < R4
;R7 € R7 - 16

For use in conjunction with stack addressing, four alternative names can be used for

the addressing modes. See the LDM instruction for a detailed discussion and example of
usage.

Page 29

4.30 STR — Store Register
Syntax:
STR{<cond>} <Rd>, <addressing_mode>

RTL:

if(cond)
memory[memory_address] < Rd
if(writeback)

Rn < end_address

Flags updated:

None

Encoding:

31]30[29]|28]27[26]25[24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7[6]5]4[3]2]1]0
cond O[2]1|P|UJO[W]|O Rn Rd addressing_mode

Usage and Examples:
The STR instruction stores a single register to memory. See the section Load/Store
Register Addressing Modes for a description of the available addressing modes.

STR RO, [R1], -R2, LSL #2 ;memory[R1] = RO, R1 = R1 - (R2 * 4)
STR RO, [R1, #4] ;memory[R1+4] = RO, R1 unchanged

4.31 STRB — Store Register Byte
Syntax:
STRB{<cond>} <Rd>, <addressing_mode>

RTL:

if(cond)
memory[memory_address] < Rd[7:0]
if(writeback)

Rn €< end_address
Flags updated:

None

Encoding:

31]30[29]|28]27[26]25[24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7[6]5]4[3]2]1]0
cond O[2]1|PJUJ1[W]|O Rn Rd addressing_mode

Usage and Examples:

The STRB instruction stores the least significant byte of a register to memory. See the
section Load/Store Register Addressing Modes for a description of the available
addressing modes.

STRB RO, [R1, #4]! :memory[R1+4] = RO, R1=R1+4

Page 30

4.32 STRH — Store Register Halfword

Syntax:

STRH{<cond>} <Rd>, <addressing_mode>

RTL:
if(cond)

memory[memory_address] < Rd[15:0]

if(writeback)

Rn < end_address
Flags updated:

None

Encoding:

31]30[29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13]12]11]10] 9] 8 5 3/2]1]0
cond 0O|O0|O|P|U|I|[W]|O Rn Rd addr_mode 1 addr_mode

Usage and Examples:
The STRH instruction stores the least significant halfword (2 bytes) of a register to
memory. See the section Miscellaneous Load/Store Addressing Modes for a description

of the available addressing modes.

STRH
STRH

RO, [R1], #2
RO, [R1, #-2]

4.33 SUB - Subtract

Syntax:

;memory[R1] = R0, R1 =R1 + 2
;memory[R1 — 2]=R0, R1 unchanged

SUB{<cond>}{S} <Rd>, <Rn>, <shifter_operand>

RTL:
if(cond)

Rd < Rn - shifter_operand

Flags updated if S used:

N, Z,V,C

Encoding:

31]30[29|28[27]26]25]24[23][22]21]|20]19]18][17]16]15]14[13][12|11]10]9]8]7[6]5]4[3]2]1]0
cond o|ojlI|0O]|O]1l]|0]S Rn Rd shifter operand

Usage and Examples:
SUBS RO, RO, #1
SUB RO, RO, RO, ASR #2
Note that the carry flag (C) is the complement of a borrow flag. If a borrow is required
by the operation, C will be set to 0.

;decrements RO, updates flags

;multiply RO by 0.75

Page 31

4.34 SWI — Software Interrupt
Syntax:
SWI{<cond>} <immediate 24>

RTL:
if(cond)
R14 svc < address of next instruction after SWI instruction
SPSR_svc € CPSR ; save current CPSR
CPSR[4:0] < 10011b ; supervisor mode
CPSR[5] €« O ; ARM execution
CPSR[7] € 1 ; disable interrupts
PC < 0x00000008 ; jump to exception vector
Flags updated:
N/A
Encoding:
31[30]29|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14][13]12]11][10] 98] 7[6][5]4][3]2]1]0
cond 1]11]1]1 immediate_24

Usage and Examples:

The SWI instruction causes a SWI exception. The processor disables interrupts,
switches to ARM execution if previously in Thumb, and enters supervisory mode.
Execution starts at the SWI exception address.

The 24-bit immediate value is ignored by the instruction, but the value in the instruction
can be determined by the exception handler if desired. Parameters can also be passed
to the SWI handler in general-purpose registers or memory locations.

4.35 SWP - Swap
Syntax:
SWP{<cond>} <Rd>, <Rm>, [<Rn>]

RTL:

if(cond)
temp < [Rn]
[Rn] € Rm
Rd < temp

Flags updated:
None

Encoding:

31]30[29]|28[27]|26]25]|24]23]|22]21]20]19]18]17]16]15]14|13][12]11]10]9[8]7[6[5]4[3]2]1]0

cond 0j|0j0j1]0]0|0O]O Rn Rd SBZ 1/0/0]1 Rm

Page 32

Usage and Examples:

The SWP instruction exchanges a word between a register and memory. This
instruction is intended to support semaphore manipulation by completing the transfers
as a single, atomic operation.

ADR R1, semaphore ;semaphore address
MOV RO, #1

SWP RO, RO, [R1] ;make swap

CMPS RO, #0 ;test result

4.36 SWPB — Swap Byte
Syntax:
SWPB{<cond>} <Rd>, <Rm>, [<Rn>]

RTL:

if(cond)
temp < [Rn]
[Rn] € Rm
Rd < temp

Flags updated:
None

Encoding:

31]30]29|28[27]26]25]24]23][22]21[20]19]18[17]16]15]14[13]12]11]10]9]8]7[6]5]4[3]2]1]0

cond o(0fO|21(0|21]|0]0O Rn Rd SBZ 1/0(0|1 Rm

Usage and Examples:

The SWPB instruction exchanges a single byte between a register and memory. This
instruction is intended to support semaphore manipulation by completing the transfers
as a single, atomic operation.

ADR R1, semaphore ;semaphore address
MOV RO, #1

SWPB RO, RO, [R1] ;make swap

TST RO, #OxFF ;test result

Page 33

4.37 TEQ — Test Equivalence

Syntax:
TEQ{<cond>} <Rn>, <shifter_operand>

RTL:
if(cond)
Rn XOR shifter_operand

Flags updated:

N, Z, C

Encoding:

31]30[29]|28]27[26]25[24]23]22]21]20]19]18]17]16]15]14]13]12]11]10]9]8]7[6]5]4[3]2]1]0
cond 0O|{O0JI]1]0]0]1]12 Rn Rd shifter operand

Usage and Examples:
The TEQ instruction performs a non-destructive bit-wise XOR (the result is not stored).
The flags are always updated. The most common use for this instruction is to determine
if two operands are equal without affecting the V flag. It can also be use to tell if two
values have the same sign, since the N flag will be the logical XOR of the two sign bits.
TEQ RO, #0x8000 ;sets Z = 1 if RO contains the value 0x00008000
TEQ RO, R1 ;sets N = 1 if signs are different

4.38 TST - Test
Syntax:
TST{<cond>} <Rn>, <shifter_operand>

RTL:
if(cond)
Rn AND shifter_operand

Flags updated:

N, Z, C

Encoding:

31]30[29|28[27]26]25]24[23][22]21]|20]19]18][17]16]15]14[13][12|11]10]9]8]7[6]5[4[3]2]1]0
cond 0O|O0|I|1]0]0]|0]1 Rn Rd shifter operand

Usage and Examples:
The TST instruction performs a non-destructive AND (the result is not stored). The flags
are always updated. The most common use for this instruction is to determine the value
of an individual bit of a register.

TST RO, #0x8000 ;sets Z = the complement of RO[15]

Page 34

4.39 UMLAL — Unsigned Multiply-Accumulate Long

Syntax:

UMLAL{<cond>}{S} <Rd_LSW>, <Rd_MSW>, <Rm>, <Rs>

RTL:
if(cond)

Rd_MSW:Rd_LSW < Rd_MSW:Rd_LSW + (Rs « Rm)

Flags updated if S used:
N, Z (V, C are unpredictable)

Encoding:
31]30[29]|28[27]|26]25]|24]23]|22]21]20]19]18]17]16]15]14[13[12]11][10]9[8]7 5/4[3]2]1]0
cond 0/o/o|0[1][0[1]S| Rd MSW Rd_LSW Rs 1/0[0]1 Rm

Usage and Examples:
UMLAL performs an unsigned 32x32 multiply operation with a 64-bit accumulation. The
product of Rm and Rs is added to the 64-bit unsigned value contained in the register

pair Rd_MSW:Rd_LSW. All values are interpreted as unsigned binary.
The instruction below adds the product of R2 and R3 to the 64-bit number stored in

R1:0.

UMLAL

RO, R1, R2, R3

4.40 UMULL — Unsigned Multiply Long

Syntax:

UMULL{<cond>}{S} <Rd_LSW>, <Rd_MSW=>, <Rm>, <Rs>

RTL:
if(cond)

Rd_MSW:Rd_LSW < Rs « Rm

Flags updated if S used:
N, Z (V, C are unpredictable)

Encoding:
31]30]29]|28]27]26]25]24]23]22]21]20]19]18]17]16]15]14]13][12]11]10] 9] 8] 7 5/4]3]2]1]0
cond 0[0|0(0|2|0|0|S| Rd MSW Rd LSW Rs 1 01 Rm

Usage and Examples:
UMULL performs an unsigned 32x32 multiply operation. The product of Rm and Rs is

stored as a 64-bit unsigned value in the register pair Rd_MSW:Rd_LSW. All values are
interpreted as unsigned binary.
The instruction below stores the product of R2 and R3 as a 64-bit number in R1:0.

UMULL

RO, R1, R2, R3

Page 35

5 Pseudo-Instructions

5.1 ADR — Load Address (short-range)
Syntax:
ADR{cond} <Rd>, <label>

Description:

The ADR pseudo-instruction assembles to a single ADD or SUB instruction, normally
with the PC as an operand. This produces position-independent code. The assembler
will report an error if it cannot create a valid instruction to load the address. If the label
is program-relative, it must be in the same assembler area as the ADR instruction. (The
ADRL pseudo-instruction can reach a wider address range.)

5.2 ADRL — Load Address (medium-range)
Syntax:
ADRL{cond} <Rd>, <label>

Description:

The ADRL pseudo-instruction will always generate a two-instruction sequence to load
the address of the given label into the destination register, giving it a wider target
range than the ADR instruction. The code is position-independent. The assembler will
report an error if it cannot create a valid instruction sequence. (The LDR pseudo-
instruction with a label argument can reach any address.)

5.3 ASR — Arithmetic Shift Right
Syntax:

ASR{cond}{S} <Rd>, <Rm>, <Rs>
ASR{cond}{S} <Rd>, <Rm>, <#shift_count>

Description:

ASR is a synonym for the MOV instruction with an ASR-shifted register operand. If an
immediate shift count is used, it is limited to the range 1-32. If Rm is not included, the
assembler will assume it is the same as Rd.

ASR RO, R1 is equivalent to MOV RO, RO, ASR R1
ASR RO, R1, R2 is equivalent to MOV RO, R1, ASR R2

Page 36

5.4 LDR — Load Register
Syntax:

LDR{cond} <Rd>, =<expression>
LDR{cond} <Rd>, =<label-expression>

Description:

The LDR pseudo-instruction will generate an instruction to load the destination register
with the desired value.

The <expression> field must evaluate to a numeric constant. If the constant is an
allowable immediate expression (or the complement of one), a MOV or MVN instruction
will be generated. If it is not, the assembler will place the value in a memory location,
and generate a PC-relative load instruction to load it from that memory location.

If a label is specified, the assembler will generate a local memory location to store the
label address, and include the appropriate linker directives so that the correct address
will be in that location after linking.

5.5 LSL — Logical Shift Left

Syntax:

LSL{cond}{S} <Rd>, <Rm>, <Rs>
LSL{cond}{S} <Rd>, <Rm>, <#shift_count>

Description:

LSL is a synonym for the MOV instruction with an LSL shifter operand. If an immediate
shift count is used, it is limited to the range 0-31. If Rm is not included, the assembler
will assume it is the same as Rd.

LSL RO, R1 is equivalent to MOV RO, RO, LSL R1
LSL RO, R1, R2 is equivalent to MOV RO, R1, LSL R2

5.6 LSR — Logical Shift Right
Syntax:

LSR{cond}{S} <Rd>, <Rm>, <Rs>
LSR{cond}{S} <Rd>, <Rm>, <#shift_count>

Description:

LSR is a synonym for the MOV instruction with an LSR shifter operand. If an immediate
shift count is used, it is limited to the range 1-32. If Rm is not included, the assembler
will assume it is the same as Rd.

LSR RO, R1 is equivalent to MOV RO, RO, LSR R1
LSR RO, R1, R2 is equivalent to MOV RO, R1, LSR R2

Page 37

5.7 NOP — No Operation
Syntax:
NOP

Description:

There are numerous ways to encode a NOP (no operation) instruction for the
ARM7TDMI processor, such as adding O to a register, ORing a register with 0,
branching to the next instruction, etc. The actual encoding of the NOP is assembler-
dependent.

5.8 POP -Pop
Syntax:
POP{cond} reg_list

Description:
POP is a pseudonym for the LDMIA instruction, with R13! specified for the base register
(Rn). The PUSH/POP instructions assume a full-descending (FD) stack organization.

5.9 PUSH - Push
Syntax:
PUSH{cond} reg_list

Description:

PUSH is a pseudonym for the STMDB instruction, with R13! specified for the base
register (Rn). The PUSH/POP instructions assume a full-descending (FD) stack
organization.

5.10 ROR — Rotate Right

Syntax:

ROR{cond}{S} <Rd>, <Rm>, <Rs>

ROR{cond}H{S} <Rd>, <Rm>, <#shift_count>

Description:

ROR is a synonym for the MOV instruction with an ROR shifter operand. If an
immediate shift count is used, it is limited to the range 1-31. If Rm is not included, the
assembler will assume it is the same as Rd.

ROR RO, R1 is equivalent to MOV RO, RO, ROR R1
ROR RO, R1, R2 is equivalent to MOV RO, R1, ROR R2

Page 38

5.11 RRX — Rotate Right with Extend

Syntax:

RRX{cond}{S} <Rd>, <Rm>

Description:

RRX is a synonym for the MOV instruction with an RRX shifter operand. If Rm is not
included, the assembler will assume it is the same as Rd.

RRX RO is equivalent to MOV RO, RO, RRX
RRX RO, R1 is equivalent to MOV RO, R1, RRX

Page 39

