
1

Detecting the Multiple
States of Oyster Activity

and Orientation using
Deep Learning Image

Processing and Computer
Vision Algorithms

Joshua Comfort

Department of Computer Science, Salisbury University
jcomfort1@gullnet.salisbury.edu

Ian Rudy
Susquehanna University

rudyi@susqu.edu

Dr. Yuanwei Jin, UMES
Dr. Enyue (Annie) Lu, Salisbury University

Abstract— The United Nations projects that the global human
population will grow to eleven billion by 2100. As the populace
increases, the demand for food will likewise grow. The global
farming sector will need to help meet this increased need by
boosting its efficiency and production volume. These industries
will need to increase their output by improving their current
practices by implementing innovative technologies that improve
growth. One area, in particular, needs much improvement, the
oyster farming industry still uses practices from the 19th century.
Modernizing oyster farming has the potential to provide large
quantities of a high-protein sustainable food source. This research
aims to create an automated monitoring system that will allow
oyster farmers to track their oyster crops' health and activity
remotely. To create such a system, we utilize high-performance
computing and deep learning to adapt an object detection model,
YOLOv5_OBB, to recognize oysters under three different states
of activity. By periodically using the object detector, farmers can
use the activity to help infer the health of their oyster crops,
reducing the amount of work required and thus increasing
efficiency. In addition to applications in aquaculture, deploying
the systems developed in this project can benefit oyster restoration
efforts. For example, helping monitor the health of the restored
populations, such as those in the Chesapeake Bay.

Index Terms—Detection, Oysters, Aquaculture, Food,
Orientation, GPU, HPC, Activity, YOLOv5, USDA, Industry1

I. INTRODUCTION

The United Nations projects that the global human
population will increase by two billion people by 2050,

The work is funded by NSF CNS-2149591 under Research Experiences for
Undergraduates (REU) Program and by USDA National Institute of Food and
Agriculture.

leveling off at over 11 billion people in 2100 [1]. As the
population grows, there is a forecasted influx in the global
food demand for food ranging anywhere from 60-90%.
Currently, the preparation of the international food production
sector is inadequate to deal with such an enormous surge in
demand [2, 3]. To be equipped to match this new stipulation
for food requires the creation of entirely new industries. The
existing areas need to implement modern practices and
increase efficiency using modern technologies. The shellfish
farming industry is one sector with the potential to meet the
increase in food demand. Shellfish are both a sustainable and
environmentally friendly source of high-protein food; the
industry also provides opportunities for economic growth
along coastal regions [4].

However, the current practices within the aquaculture
industry lack the technological advancements in the rest of the
agricultural industry. In particular, the oyster farming sector
still utilizes the same practices established during the 19th
century, which are both inefficient and labor-intensive [5].
With the oyster industry in desperate need of updated
practices, it is quickly falling behind the rest of the food
production sector [6]. Considering the current limitations, the
Food and Agriculture Organization of the United Nations
ranks the industry as having the potential to experience
massive growth [7]. Therefore, this research will explore one
of the many possible technological advancements within the
field. This project will study the prospect of using automated
monitoring systems to increase efficiency by utilizing deep
learning algorithms. By using monitoring systems, farms can
use the oyster crop's activity to infer the health of the
population and their adaptation to the environment.

In this research, we adapt and optimize a deep
learning model capable of detecting oysters' activity and
orientation. By classifying oysters into three states of activity,
closed, semi-open, and open, the model will be capable of
monitoring oysters over time. In addition, this project explored
the possibility of using each oyster's orientation to increase the
accuracy of predictions. Previous research groups have sought
to implement similar systems; however, this project improved
the previous work by using orientation to provide more
information about each oyster and generalizing the model to
work across multiple environments [8]. In addition to its
applications within the aquaculture industry, the use of this
project's advancements may prove beneficial to oyster
restoration endeavors. For example, remotely monitoring the
oysters will help reduce the labor required across many
locations, such as the work done within the Chesapeake Bay
[9].

II. RELATED WORK
 Within the confines of this field of research, there
have been various attempts at creating an oyster detection
system. The first of these systems reviewed was a class project
by an undergraduate student at the University of Maryland
Eastern Shore (UMES) [10]. The student was tasked with
creating a fish classification algorithm to classify fish images

mailto:jcomfort1@gullnet.salisbury.edu
mailto:rudyi@susqu.edu

2

based on the species they contained. The model created could
classify five different fish species with accuracy ranging from
70-96%, depending on which species was being classified. To
begin this research, we started by reimplementing this project
using oysters to learn the basics of machine learning and better
understand the tools being used. However, this system was
only an image classifier and did not localize the oysters within
the image; thus, it was left behind in search of more applicable
models [11].
 The second piece of material reviewed was a
comprehensive capstone design project done by students at
UMES [12]. The project covered from design to an
implementation capable of running an object detection system
on a RaspberryPi. The model used by the researchers could
localize oysters under specific conditions and classify their
activity. The project took advantage of existing convolutional
neural networks to create the oyster detection system,
therefore requiring less direct implementation [13]. However,
the model's performance may be limited in real-world
applications due to the dataset being composed of images from
a tank of oyster shells placed in different activity states,
possibly limiting the model's performance in underwater
environments [14].
 The final related work review was a research paper
published by researchers at the University of Maryland
College Park [15]. The project utilized a Remotely Operated
underwater Vehicle (ROV) to take pictures of oysters in
various underwater locations. The annotated images were fed
into Facebook Research Group's Detectron2 model. As a
result, the researchers were able to train an accurate model
capable of localizing the oysters within an image. However,
this research did not seek to classify the oyster's state of
activity. Additionally, the model's accuracy was around 79%,
thus leaving room for some improvement [16]. Consequently,
our project takes the strengths of each of these projects and
combines them into a single general model capable of oyster
activity and orientation identification.

III. METHODS
 In order to detect an oyster and its orientation within
an image, an object detector needs to accomplish three steps,
classification, localization, and bounding box rotation.
Combining all of these steps, one is able to implement a fully
functioning system that can identify oysters' orientation.

A. Classification
The Convolutional Neural Network (CNN) is the

most common type of classifier. The CNN is a particular type
of neural network that seeks to mimic the way the human
visual cortex works by simulating virtual neurons. Each of
these neurons contains a mathematical function that is only
activated if the value input passes a defined threshold. By
connecting these neurons, they can be made to simulate the
behavior of a human brain [17]. As a result, a CNN can reduce
the dimensions of an image without losing the information
contained within, thus reducing the amount of computational
power needed to classify it. To achieve its classification, a
CNN uses three main layers, convolutional layers, pooling
layers, and a fully connected layer. The convolutional layer
works by passing a filter over each color channel of the input

image; these values are then summed and output into a feature
map.

FIGURE I

Fig 1. This figure shows a convolutional layer with 2x2 filters, each filter
passes over a layer of the input image, and their results are summed into the
feature map [14].

Each filter has specialized weights to look for specific features
within the input image. The programmer may manually
specify the weights; however, much more commonly, weights
are learned by the network by feeding it the data to be
classified in a network training process. By looking for
specific features, the network can save the dominant features
that make up the image while reducing the dimensionally [18].
 The output of the convolutional layer is passed into
the next section of the model, the pooling layer. The pooling
layer is designed to shrink the dimensions of the feature map
further while still extracting the details. Like the convolutional
layer, the pooling layer uses a filter to pass over the feature
map and extract information. There are two kinds of pooling,
max, and average pooling. Max pooling takes the maximum
value from the filter and outputs that value into the reduced
feature map. In contrast, average pooling takes the average
value of the filter and places that value into a reduced feature
map.

FIGURE II

Fig 2. The above figure shows the two kinds of pooling. Max pooling takes
the maximum value, and average pooling takes the average of the values [15].

In addition to reducing the dimensionality, the pooling layer
also reduces noise within the image. An example might be
removing the background from the subject or filtering out
other objects that are not being classified [19].

Lastly, the output of the convolutional and pooling
layers is passed to the fully connected layer. The fully
connected layer contains the neurons that will be used to

3

classify the image. These neurons learn which of the features
extracted make up each object being classified. During the
training process, the neurons' weights in this layer are updated
to match the training data. The output of this layer is a class
label with the value that the model thinks the image contains
[20]. After the network is trained, it can be used to classify
images it has not seen before. Together, the layers make up a
CNN model, and these models can be of different sizes or
depths depending on the application.

B. Localization
 Image localization builds upon image classification;
usually, the first layers of an image localizer are made up of
CNN layers. However, unlike a convolutional neural network,
an object localizer predicts four values, the x and y coordinate,
and the width and height rather than a prediction label. The
four output values draw a bounding box around each object of
interest. In contrast to object detection, localization, like
classification, traditionally only works for a single object
within an image. Object detection combines localization and
classification for multiple objects within an image [21].

C. Detection
YOLOv5 is a single-stage object detector made of

three major components, the backbone, neck, and head.
Similar to the convolutional layers of a CNN, the backbone's
primary purpose is to extract key features from the input
image. This project used the YOLOv5 Oriented Bounding
Boxes (YOLOv5_OBB) based on the YOLOv5 architecture.
YOLOv5 (You only look once) is built on a system that
divides the input image into a grid. Each region is accountable
for detecting the objects inside itself within the grid system
[22]. YOLOv5 uses a backbone known as DarkNet-53, which
provides better performance than previously used models. A
traditional CNN can be transformed into a model backbone by
cutting off the network's final layers and replacing them with
filters that will predict bounding boxes. The neck then
generates feature pyramids which the model uses to generalize
objects at different scales. Pyramids help the model learn the
features of objects it is trying to detect, allowing for
generalization. YOLOv5 takes advantage of a Path
Aggregation Network, also known as PANet, which attempts
to boost the information flow by shortening the path it needs
to follow. Finally, the model head performs the actual
detections. The head draws the bounding boxes around objects
and produces the classifications [23, 24, 25].

FIGURE III

 Fig 3. The above figure shows an illustration of the YOLOv5
architecture. The backbone feeds into the feature pyramid network, which
then passes its information to the head. Illustration obtained from [26].

D. Orientation
YOLOv5_OBB builds upon YOLOv5 further by

allowing for more accurate bounding boxes. The boxes
produced by YOLOv5_OBB have an additional factor,
orientation. Oriented bounding boxes allow the model's output
to fit the objects of interest much more closely and provide
additional information about the object. By building off
YOLOv5, the oriented model keeps the same architecture but
splits off the original model's head to add orientation to the
bounding boxes.

FIGURE IV

Fig 4. This figure depicts YOLOv5_OBB architecture, similar to

YOLOv5, and the significant difference is the orientation calculator splitting
off of the model's head. This image was obtained from [23].

Some orientation detectors [27] opt for an eight-parameter
representation for rotated bounding boxes, storing the x and y
coordinates for each of the four vertices. YOLOv5_OBB, on
the other hand, represents the boxes using five different
values: the center x value, the center y value, the box width of
the box, the height of the box, and the angle at which it is
rotated [28].

FIGURE V

4

Fig 5. The above image illustrates how YOLOv5_OBB represents
the rotation of bounding boxes. Obtained from [28].

This project builds upon YOLOv5_OBB by providing
additional information about the detected oysters using the
information provided for each bounding box. By using the
angle theta, length, and width, arrows parallel to the
orientation axis are drawn. However, the direct orientation
cannot be inferred due to the lack of information about the
oyster's contours within a given image. Some viable solutions
to this problem can be seen in the future work section. In
addition to the arrows drawn, the oyster’s orientation is
calculated using the ratio of length to width and the area of the
box.

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 𝑟𝑟𝑟𝑟𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟 = 𝑟𝑟𝑟𝑟𝑡𝑡𝑓𝑓𝑡𝑡𝑤𝑤𝑟𝑟𝑟𝑟_𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟 ∗ (𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ ∗ ℎ𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡)

𝑚𝑚𝑓𝑓𝑚𝑚(𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ,ℎ𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡) ∗ 0.01
 (1)

 The above equation gives a good approximation of
the rotation of each oyster; the rotation factor is calculated by
taking the ratio of the shorter side over the long side. Then,
multiplying by the area of the bounding box, the scale of each
oyster is taken into account. In addition, the rotation factor is
scaled by dividing by 1% of the longest side. Thus, the smaller
the rotation factor, the more of the oyster’s face is visible to
the camera; therefore, the greater confidence the model can
have in its predictions.

IV. PROBLEMS AND CHALLENGES
 During this research, multiple complex challenges
needed to be addressed before a final automatic detector could
be produced.

A. Lack of a Dataset
The first challenge was creating a dataset, which was a
challenging task. Traditionally, underwater datasets have been
both expensive and time-consuming to compile due to the
nature of underwater environments [29]. However, after
searching, it became apparent that no existing oyster datasets
were publicly available. Thus, this project required the
creation of a dataset containing oysters within various
environments. Unfortunately, finding good-quality images
proved quite challenging. Therefore, the target size for the
dataset was set at 1000 images, allowing for a suitable
generalization of oysters while not requiring the majority of
the research time. In addition, selecting images with various
angles, subject sizes, and water clarity for the training set will
allow the model to work in many real-world situations.
 Initially, around 225 images of oysters were
provided; however, each image needed labeling to fit the
needs of this research [30]. Due to the nature and scale of this
research, this project did not have the equipment or time to
collect real-world images; thus, the remaining images for the
dataset were collected from online sources. Each image
needed to be annotated, manually cropping each oyster using
polygons. All of the annotation for this project was done in
Roboflow, an online dataset creation platform that allows for
expiration into various object detection formats [31]. The
dataset split the oysters into three states of activity: open,

semi-open, and open. While there was no absolute metric, the
labeling of the oysters followed the guidelines established in
the Oyster Activity Detection System Report at UMES [32].
Closed oysters' openings range from 0-0.4 cm, semi-open
comprised oysters from 0.5-0.9 cm, and open oysters are those
with an opening greater than 1 cm.

By splitting the oysters into distinct states of activity,
the oyster crop's activity can be observed by taking inference
on frames over time. Each state of activity is separated into a
different class, represented by a unique color allowing quick
reference without needing to read the label.

FIGURE VI

Fig 6. An example of images of oysters before and after annotation. Different
oyster activities are differentiated by color. For example, closed oysters are
shown in magenta, and semi-open oysters are dark blue.

Additionally, data augmentations were applied to the dataset
to increase the variety of information. Data augmentations are
filters applied to the input images that change the data to
represent different real-world scenarios. For example, crops
and zooms stand in place of different camera locations, sheers
and rotations show different camera rotations, and brightness
and contrast mimic different lighting scenarios [33]. The
augmentations on the training set help the model recognize the

5

oysters under adverse conditions such as low light conditions,
cloudy water, and varying types of obstructions.

FIGURE VII

Fig 7. The above example is the YOLOv5 object detector detecting an
obscured oyster in slightly cloudy water.

Furthermore, by selecting the data from numerous different
sources, the dataset helps ensure that model covers as many
environments as possible. A diverse dataset improves over
previous implementations that used relatively homogeneous
data [34].

B. Complexity in Training

 The second challenge addressed was training the
object detection models using the dataset. Before training an
object detection model, the dataset is split into three segments,
training, validation, and testing data. The training data is used
to teach the model, while validation and testing are used to
evaluate the model's performance. The dataset is split into
batches, then fed to the model in steps called epochs. The
model's performance is improved by adjusting the number of
epochs, batch size, and image size during the training process.
This project used 640px by 640px images with varying batch
sizes. The number of epochs varied from run to run but
usually ranged from 250 to 1000.

All object detectors were programmed in Python, a
relatively computationally demanding language compared to
C and C++ [35]. Due to the scale and complexity of the
detector architectures, the amount of time and computational
power needed to train the models were not readily accessible
[36]. To compensate for the lack of high-powered computers,
the object detectors were trained using Google Colab,
Google's virtual remote Python environment [37]. Colab
provides users access to High-Performance Computing
powered by GPU acceleration accessible through a web
browser. Nevertheless, even with access to high-performance
GPUs and high RAM runtimes, the training process still took
multiple days to run each time. Thus, a significant amount of
time was required for the training process, meaning that
improving model performance through iteration was quite
tricky. Multiple training instances were run in parallel using
several computers to remedy this.

C. Orientation Identification
 The final major issue tackled was identifying the
oysters' orientation. Again, the YOLOv5_OBB model proved
a valuable tool for accomplishing this task. In addition to the
oriented bounding boxes provided by the object detector,
arrows and rotation values were added. The arrows point
parallel to the orientation axis and are color-coded based on
the orientation of the rotation factor of the oyster. The rotation
factor is calculated using the ratio of the short side of the
bounding box over the long side. This information can fully
detect the oysters' orientation and create a more accurate
detection model. Although such a system could not be
implemented due to time constraints, those wishing to
continue this research should visit the Github repository to
find more information.

V. PROCEDURE AND EXPERIMENTATION
 In this project, we started by repeating the fish
species classification project at UMES to understand the
systems and tools. The project was reimplemented using
oyster images rather than previously used fish species. After
the reimplementation, more research was conducted to learn
more about the direction to take in this research. As stated
previously, it became apparent that there were no available
datasets of oyster images, so one would need to be created for
this project. Additionally, after reading the documentation
provided and speaking with the faculty mentor, an oyster
object detector was decided upon. Initially, as images were
collected, they were labeled into one of two states, open or
closed. After around 350 images had been collected, the
research set out to implement object detection using this data.
 Due to the time constraints and wealth of preexisting
models, this research took advantage of available object
detection models for implementation. The first model used
was Facebook Research Group’s Detectron2. Detectron2 is a
deep learning model specializing in image segmentation and
object detection [38]. The research group also provides access
to the model zoo, a collection of model backbones. The three
backbones trained were Faster_RCNN_R_50_C4_3x,
Faster_RCNN_X_101_ 32x8d_FPN_3x, and
Retinanet_R_101_FPN_3x. Each model provides its benefits
and disadvantages; thus, robust training was done on each
backbone [39]. However, due to some constraints of the
Detectron2 model and a shift in the project's goals, this model
was left behind in search of another architecture.
 Next, we focused on working with the YOLOv5
object detector. Like Detectron2, YOLO provides access to a
selection of backbones based on the project's needs. This
project experimented with the small (yolov5s) and extra-large
(yolov5x) backbones and compared the results. When
compared to Detectron, YOLO had several benefits that made
it more beneficial for use in this project. First, YOLO
separates the detected classes using color, making it more
intuitive to see the oysters' activity at a glance. Secondly, the
YOLO seemed to provide much better results for the same
amount of training time. Finally, in the tests done, YOLOv5
was better at detecting small objects when compared to
Detectron.

6

 After experimenting with YOLOv5 and achieving
decent results, this project shifted to additionally detect three
different states of activity and infer each oyster's orientation.
An oyster's orientation significantly influences the ability to
detect activity, meaning that if orientation can be correctly
detected, future models can be made more accurate. To
attempt to solve this issue, YOLOv5_OBB was chosen for this
project. Already having some experience with YOLOv5,
YOLOv5_OBB seemed the natural choice for this problem.
However, using this new model, the dataset format needed to
be changed to use oriented bounding boxes. Therefore, the
dataset was grown until it reached 1000 images, providing a
good variety of oyster data. Unfortunately, the Roboflow
export for the oriented bounding box format had issues and
was incompatible with the model. To fix this, we developed a
script to format the dataset properly and uploaded it to the
Github repository for those interested in creating their versions
of the dataset [40].

VI. PERFORMANCE ANALYSIS
 After the object detector was trained, it was evaluated
using some standard object detection metrics, recall, precision,
mAP@0.5, and mAP@0.5:0.95. A model's loss can also
measure how well a model performs on a dataset.

A. Precision & Recall

 Before understanding precision or recall, it is crucial
to understand the intersection over union (IoU) metric. IoU
measures how close a predicted bounding box is to the ground
truth bounding box. To calculate IoU, the intersection of the
ground truth and predicted bounding box is divided by the
union of the two boxes [41]. The model's performance can be
reasonably measured by calculating the intersection over the
union value for each bounding box.

FIGURE VIII

Fig 8. Above is a depiction of the intersection over union calculation. IoU is
described as 1 (Intersection of the predicted and ground truth boxes) over 2
(the union of the same two boxes). Image from [41].

Usually, a good IoU value is said to be anything over 0.5;
anything lower is considered poor. Using IoU, both recall and
precision can be calculated. Using such an IoU threshold, the
truth value can be determined for each prediction. If the model

predicts a box with an IoU value over 0.5, it is called a true
positive. On the other hand, if the value is less than 0.5, the
prediction is considered a false positive. Lastly, if there is a
ground truth box that the model fails to predict, it is labeled as
a false negative [42]. The other possibility, true negative, is
not needed in these calculations.

FIGURE IX

Fig 9. This figure shows all the possible values for a model's prediction from
left to right, top to bottom, true positive, false positive, false negative, and true
negative. Image obtained from [43].

By computing these values for each bounding box, recall and
precision can be calculated for every image. The recall is
computed by taking the ratio of the number of correctly
predicted objects over the number of total objects.

𝑅𝑅 =
 (𝑇𝑇𝑟𝑟𝑇𝑇𝑤𝑤 𝑃𝑃𝑟𝑟𝑃𝑃𝑤𝑤𝑡𝑡𝑤𝑤𝑃𝑃𝑤𝑤𝑃𝑃)

(𝑇𝑇𝑟𝑟𝑇𝑇𝑤𝑤 𝑃𝑃𝑟𝑟𝑃𝑃𝑤𝑤𝑡𝑡𝑤𝑤𝑃𝑃𝑤𝑤𝑃𝑃 + 𝐹𝐹𝑓𝑓𝐹𝐹𝑃𝑃𝑤𝑤 𝑁𝑁𝑤𝑤𝑤𝑤𝑓𝑓𝑡𝑡𝑤𝑤𝑃𝑃𝑤𝑤𝑃𝑃)
 (2)

Precision, however, measures how many of the model's
predictions were correct. The model's precision can be
calculated by taking the ratio of correct guesses over the total
number of guesses [44].

𝑃𝑃 = (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃)
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃)

 (3)

C. Mean Average Precision
 By using precision and recall, a more accurate
representation of the model's performance can be calculated,
mean average precision (mAP). Before the mAP can be
determined, average precision must be computed for each
class. Then, the precision and recall values are graphed; taking
the integral of this graph will return the AP value for the given
class. By determining AP at a given IoU value for each class,
the mAP can be computed by simply taking the average of all
the AP values. mAP@0.5:0.95 is evaluated by calculating the
mAP at IoU values ranging from 0.5 to 0.95 at intervals of
0.05 [45].

FIGURE X

7

Fig 10. Above is the precision-recall curve for a 325-epoch training attempt
on yolov5x.

Different models can be compared using a combination of
these metrics, and the best performers can be easily identified.

D. Loss

Machine learning models learn by using a loss function. A loss
function helps an algorithm grasp a specific dataset. A loss
function can gradually reduce the model's error by measuring
the distance between the ground truth value and the predicted
value [46]. YOLOv5_OBB uses four different loss functions;
the first, class loss, measures how well a model classifies the
contents of a bounding box. Box loss is a metric to determine
how closely the predicted bounding box fits the object.
Objectness loss helps the model choose the predicted box with
the best IoU value [47]. Finally, theta loss is used to accurately
teach the model to predict an object's angle.

E. Model Comparison

Both yolov5n and yolov5x were trained, and their results were
compared. When trained on the same number of epochs, the
larger of the two models, yolov5x, took much longer to train
but produced significantly better results.

TABLE I

 Precision Recall mAP 0.5 mAP 0.05:0.95

ylv5n 0.48 0.47 0.45 0.18

ylv5x 0.53 0.62 0.53 0.28
The two models trained for 325 epochs on the same dataset. The time needed
to train yolov5n was much shorter than the time required for yolov5x. Higher
numbers indicate better performance.

However, having a much more complex model structure,
yolov5x began to overfit the data, increasing the model’s loss.
When training a model, the goal is to minimize the loss values,
meaning that the model is correctly generalizing the dataset it
is being fed. One possible method of reducing loss during
training is introducing dataset augmentations. However,

complex augmentations can adversely impact the model's
performance, thus meaning it must be trained for more epochs.

TABLE II

 obj_loss box_loss cls_loss theta_loss

ylv5n 0.11 0.048 0.023 0.15

ylv5x 0.15 0.047 0.024 0.16
Both trained on 325 epochs, and the metrics' loss values are displayed above.
Having a less complex structure, yolov5n performed noticeably better in both
obj_loss and cls_loss. Lower values are better. Values are rounded.

The developed program provides its users with a
choice by training both models. The larger model makes much
more accurate bounding boxes and predicts more off them;
however, its inference time is much slower, running at about
three frames per second on an IntelⓇ XeonⓇ E5-2650 v4 24
Core CPU @ 2.20GHz with 32GB of RAM. On the other
hand, while the smaller model may not be as accurate, it runs
much faster, achieving above 30 frames per second, allowing
it to be used for real-time inference. In addition to these
results, both models were trained for longer durations to
achieve better performance.

VII. RESULTS
 After the models were trained, we ran the models on
various images of oysters to visualize the results. First, each
oyster detected is labeled with its class which is also shown by
the color. Following the label is the model's confidence score,
a measure of how confident the model is that that bounding
box contains the specified class. Next is the rotation score; the
lower this number, the more likely it is that the oyster’s
opening is facing the camera, thus making it easier to classify
its activity. Finally, the rotation angle specifies how many
degrees the bounding box is rotated off-axis.

FIGURE XI

Fig 11. Right yolov5n left yolov5x. The number of each oyster detected can
be seen in the top right. The arrows point parallel to the axis of orientation.

Yolov5x can detect more of the smaller oysters within the
scene and have better fitting bounding boxes. In addition, it
has better classification accuracy, having a better distinction
between semi-open and open oysters.

8

A different example, inference on data that the model
has not seen before can give a good insight into how a model
generalizes what it has learned.

FIGURE XII

Fig 12. Above yolov5n, below yolov5x. Image obtained from [48].

This image of an oyster farm differs from all the data the
model was trained on. The looking-up view is something that
the model has not seen before, and it does a respectable job
identifying the oysters. Yolov5x identifies many more oysters
and has much better fitting bounding boxes; however, yolov5n
can detect one of the oysters that the larger model missed.
Overall, the object detector shows promising results on new
data, showing that it has potential for real-world applications.

 However, the object detector does have some
limitations. Firstly, the detector has trouble distinguishing
empty oyster shells from live oysters. A possible solution
would be to train the detector with an additional class, oyster
shell, allowing the detector to distinguish between live and
dead specimens. Secondly, the model may not find all the
oysters within a scene; the number of detections made may be
adjusted by reducing the confidence threshold, however, this
has the adverse effect of increasing the number of false
positive indications made. Additionally, the labels become
unreadable in crowded scenes containing many oysters due to
the vast amount of them on screen at once. Finally, the
orientation detection is subject to the camera’s perspective.
The orientation of oysters pointed directly at the camera

cannot be calculated accurately due to the lack of 3D
information.

VIII. FUTURE WORK
 Although this project made progress towards the final
goal, a considerable amount of work still needs to be done
before a complete project can be delivered. This section will
briefly discuss what still needs to be done and possible routes
for completing the project. While this research provided some
orientation information, no calculations were done with the
information. One possible next step for this project would be
to take the information provided by this network and feed it
into another model that uses orientation output to make more
accurate classifications. Another path is to improve the
orientation detection done by this model. Currently, the
orientation is subject to the camera angle, and subjects pointed
directly at the camera are not correctly classified. One solution
is to use depth information such as that seen below.

FIGURE XIII

Fig 13. Figure a) An image of oysters underwater. Figure b) Depth inference
run on figure a. Figure c) An image of oyster above water. Figure d) Depth
inference run on figure c.

Initial results were obtained by passing images
through the pre-trained DenseDepth, a deep learning model for
extracting depth information from an image [49]. Deeper parts
of the image are shown in orange, and the regions closer to the
camera are shown in blue. Even without training this model on
oyster images, these results were achieved; with more
exploration into this topic, better results could likely be
achieved. Secondly, 3-dimensional bounding boxes could
improve orientation detection by using all three dimensions
that an oyster can face. Using 3D bounding boxes could solve
the issues previously described [50].

IX. CONCLUSION
 As the human population grows, a large influx in
global food demand will follow. Shellfish, specifically oysters,
have been identified as a potential future food source to meet
this demand. However, the oyster farming industry lacks the
technological advancements needed to scale with newfound
demand. This research sought to create an automated oyster
detection system that will assist farmers in monitoring their
oyster crops as a solution to this problem. By taking advantage
of preexisting object detection models, this project used a
custom compiled dataset to train an object detector to detect
oysters in three different states of activity. In addition, this
project attempted to improve previous work by using the
oysters' orientation to assist in activity recognition. By taking
advantage of these emerging technologies, farmers can have
the upper hand when tackling one of the world's complex
challenges.

9

X. REFERENCES

[1] “Population,” United Nations. [Online]. Available:
https://www.un.org/en/global-issues/population. [Accessed: 21-
Jul-2022].

[2] “Growing at a slower pace, world population is expected to reach
9.7 billion in 2050 and could peak at nearly 11 billion around 2100
| UN Desa Department of Economic and Social Affairs,” United
Nations. [Online]. Available:
https://www.un.org/development/desa/en/news/population/world-
population-prospects-2019.html. [Accessed: 22-Jun-2022].

[3] “Larger population, larger people: Humanity will require 80%
more food by 2100,” Population Matters, 22-Feb-2021. [Online].
Available: https://populationmatters.org/news/2019/12/larger-
population-larger-people-humanity-will-require-80-more-food-
2100#:~:text=2100%20%7C%20Population%20Matters-
,Larger%20population%2C%20larger%20people%3A%20humanit
y%20will%20require,80%25%20more%20food%20by%202100&t
ext=A%20new%20study%20shows%20that,global%20food%20de
mand%20to%20soar. [Accessed: 21-Jul-2022].

[4] Enyue Annie Lu. [Online]. Available:
http://faculty.salisbury.edu/~ealu/REU/Projects.html. [Accessed:
22-Jun-2022].

[5] W. W. Billiot, “The Ancient Oyster,” Country Roads Magazine,
23-Jan-2015. [Online]. Available:
https://countryroadsmagazine.com/outdoors/knowing-nature/the-
ancient-oyster/. [Accessed: 22-Jul-2022].

[6] “Impact of technology on agriculture,” National Geographic
Society. [Online]. Available:
https://education.nationalgeographic.org/resource/impact-
technology-agriculture. [Accessed: 22-Jul-2022].

[7] M. N. Azra, V. T. Okomoda, M. Tabatabaei, M. Hassan, and M.
Ikhwanuddin, “The contributions of shellfish aquaculture to global
food security: Assessing its characteristics from a future food
perspective,” Frontiers, 01-Jan-1AD. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fmars.2021.654897/fu
ll. [Accessed: 22-Jul-2022].

[8] B. Sadrfaridpour, Y. Aloimonos, M. Yu, Y. Tao, and D. Webster,
“Detecting and counting oysters,” arXiv.org, 20-May-2021.
[Online]. Available: https://arxiv.org/abs/2105.09758. [Accessed:
22-Jul-2022].

[9] “Oyster restoration,” Chesapeake Bay Foundation. [Online].
Available: https://www.cbf.org/about-cbf/our-
mission/restore/oyster-restoration/. [Accessed: 24-Jun-2022].

[10] University of Maryland Eastern Shore, “Enee 422 introduction to
machine learning,” University of Maryland Eastern Shore.
[Online]. Available:
https://stg15.umes.edu/Engineering/DynPage/ENEE-422-
Introduction-to-Machine-Learning/. [Accessed: 01-Aug-2022].

[11] Jwtownsend, “ENCE 452 Artificial Intelligence: University of
Maryland Eastern Shore,” Engineering Program, 25-Feb-2022.
[Online]. Available: https://wwwcp.umes.edu/engineering/ence-
452-artificial-intelligence/. [Accessed: 22-Jul-2022].

[12] “Non Technical Summary,” Transforming shellfish farming with
smart technology and management practices for sustainable
production - UNIV of Maryland. [Online]. Available:
https://portal.nifa.usda.gov/web/crisprojectpages/1023149-
transforming-shellfish-farming-with-smart-technology-and-
management-practices-for-sustainable-production.html. [Accessed:
22-Jul-2022].

[13] “Course information,” UMass Lowell. [Online]. Available:
https://www.uml.edu/catalog/courses/engn/4010. [Accessed: 01-
Aug-2022].

[14]
[15] V. J. Major, N. Jethani, and Y. Aphinyanaphongs, “Estimating

real-world performance of a predictive model: A case-study in
predicting mortality,” JAMIA open, 26-Apr-2020. [Online].
Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382635/.
[Accessed: 01-Aug-2022].

[16] B. Sadrfaridpour, Y. Aloimonos, M. Yu, Y. Tao, and D. Webster,
“Detecting and counting oysters,” arXiv.org, 20-May-2021.
[Online]. Available: https://arxiv.org/abs/2105.09758. [Accessed:
22-Jul-2022].

[17] “Using underwater robots to detect and count oysters,” Using
underwater robots to detect and count oysters | Institute for
Systems Research. [Online]. Available:
https://isr.umd.edu/news/story/using-underwater-robots-to-detect-
and-count-oysters. [Accessed: 01-Aug-2022].

[18] J. Chen, “Neural network definition,” Investopedia, 17-Jun-2022.
[Online]. Available:
https://www.investopedia.com/terms/n/neuralnetwork.asp#:~:text=
A%20neural%20network%20is%20a,organic%20or%20artificial%
20in%20nature. [Accessed: 26-Jul-2022].

[19] N. Lang, “Using convolutional neural network for Image
Classification | Detail: Convolutional Layer,” Medium, 28-Apr-
2022. [Online]. Available: https://towardsdatascience.com/using-
convolutional-neural-network-for-image-classification-
5997bfd0ede4. [Accessed: 26-Jul-2022].

[20] N. Lang, “Using convolutional neural network for Image
Classification | Detail: Pooling Layer,” Medium, 28-Apr-2022.
[Online]. Available: https://towardsdatascience.com/using-
convolutional-neural-network-for-image-classification-
5997bfd0ede4. [Accessed: 26-Jul-2022].

[21] N. Lang, “Using convolutional neural network for Image
Classification | Detail: Fully-Connected Layer,” Medium, 28-Apr-
2022. [Online]. Available: https://towardsdatascience.com/using-
convolutional-neural-network-for-image-classification-
5997bfd0ede4. [Accessed: 26-Jul-2022].

[22] “Object localization,” Frontiers. [Online]. Available:
https://www.frontiersin.org/research-topics/28766/object-
localization. [Accessed: 26-Jul-2022].

[23] “Introduction,” YOLOv5 Documentation. [Online]. Available:
https://docs.ultralytics.com/. [Accessed: 22-Jul-2022].

[24] T. A. I. Team, “Yolo v5 - explained and demystified,” Towards AI,
01-Jul-2020. [Online]. Available: https://towardsai.net/p/computer-
vision/yolo-v5%E2%80%8A-%E2%80%8Aexplained-and-
demystified. [Accessed: 22-Jul-2022].

[25] Jeremy Jordan, “An overview of object detection: One-stage
methods,” Jeremy Jordan, 18-Sep-2018. [Online]. Available:
https://www.jeremyjordan.me/object-detection-one-stage/#yolo.
[Accessed: 22-Jul-2022].

[26] “Papers with code - panet explained,” Explained | Papers With
Code. [Online]. Available:
https://paperswithcode.com/method/panet. [Accessed: 22-Jul-
2022].

[27] Ultralytics, “Overview of model structure about Yolov5 · issue
#280 · ultralytics/yolov5,” GitHub. [Online]. Available:
https://github.com/ultralytics/yolov5/issues/280. [Accessed: 22-
Jul-2022].

10

[28] X. Yu, M. Lin, J. Lu, and L. Ou, “Oriented object detection in
aerial images based on area ratio of parallelogram,” arXiv.org, 08-
Nov-2021. [Online]. Available: https://arxiv.org/abs/2109.10187.
[Accessed: 25-Jul-2022].

[29] X. Yu, M. Lin, J. Lu, and L. Ou, “Oriented object detection in
aerial images based on area ratio of parallelogram,” arXiv.org, 08-
Nov-2021. [Online]. Available: https://arxiv.org/abs/2109.10187.
[Accessed: 01-Aug-2022].

[30] “Underwater Image Recognition Detector using Deep Convnet,”
IEEE Xplore. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/9056058. [Accessed:
24-Jun-2022].

[31] Inquiry about oyster images, 06-Jun-2022.

[32] Roboflow. [Online]. Available:
https://app.roboflow.com/newoysters/threestateoyster/19.
[Accessed: 14-Jul-2022].

[33] “Non Technical Summary,” Transforming shellfish farming with
smart technology and management practices for sustainable
production - UNIV of Maryland. [Online]. Available:
https://portal.nifa.usda.gov/web/crisprojectpages/1023149-
transforming-shellfish-farming-with-smart-technology-and-
management-practices-for-sustainable-production.html. [Accessed:
22-Jul-2022].

[34] “The Essential Guide to data augmentation in Deep Learning,” V7.
[Online]. Available: https://www.v7labs.com/blog/data-
augmentation-guide. [Accessed: 25-Jul-2022].

[35] “Non Technical Summary,” Transforming shellfish farming with
smart technology and management practices for sustainable
production - UNIV of Maryland. [Online]. Available:
https://portal.nifa.usda.gov/web/crisprojectpages/1023149-
transforming-shellfish-farming-with-smart-technology-and-
management-practices-for-sustainable-production.html. [Accessed:
22-Jul-2022].

[36] Real Python, “Python vs C++: Selecting the right tool for the job,”
Real Python, 19-Jun-2021. [Online]. Available:
https://realpython.com/python-vs-cpp/#summary-python-vs-c.
[Accessed: 25-Jul-2022].

[37] “A complete list of the best laptop for Machine Learning in 2019,”
Edureka, 05-Jan-2022. [Online]. Available:
https://www.edureka.co/blog/best-laptop-for-machine-
learning/#:~:text=RAM%3A%20A%20minimum%20of%2016,po
werful%20and%20delivers%20High%20Performance. [Accessed:
25-Jul-2022].

[38] Google colab. [Online]. Available:
https://colab.research.google.com/?utm_source=scs-index.
[Accessed: 14-Jul-2022].

[39] Facebookresearch, “Facebookresearch/Detectron2: Detectron2 is a
platform for object detection, segmentation and other visual
recognition tasks.,” GitHub. [Online]. Available:
https://github.com/facebookresearch/detectron2. [Accessed: 24-
Jun-2022].

[40] Facebookresearch, “Detectron2/MODEL_ZOO.MD at main ·
facebookresearch/detectron2,” GitHub, 21-Jul-2021. [Online].
Available:
https://github.com/facebookresearch/detectron2/blob/main/MODE
L_ZOO.md. [Accessed: 24-Jun-2022].

[41] Zenny00, “Zenny00/reu-oyster_orientation: This repository
contains the code for the detecting the multiple states of oyster

activity and orientation using deep learning image processing and
computer vision algorithms project as part of the NSF REU 2022
program,” GitHub. [Online]. Available:
https://github.com/Zenny00/REU-Oyster_Orientation. [Accessed:
01-Aug-2022].

[42] “How the compute accuracy for Object Detection Tool Works,”
How the Compute Accuracy For Object Detection tool Interpret
model results works-ArcGIS Pro | Documentation. [Online].
Available: https://pro.arcgis.com/en/pro-app/2.8/tool-
reference/image-analyst/how-compute-accuracy-for-object-
detection-
works.htm#:~:text=Recall%E2%80%94Recall%20is%20the%20ra
tio,the%20recall%20is%2075%20percent.&text=F1%20score
%E2%80%94The%20F1%20score,of%20the%20precision%20and
%20recall. [Accessed: 27-Jul-2022].

[43] “How the compute accuracy for Object Detection Tool Works,”
How the Compute Accuracy For Object Detection tool Accuracy
Outputs works-ArcGIS Pro | Documentation. [Online]. Available:
https://pro.arcgis.com/en/pro-app/2.8/tool-reference/image-
analyst/how-compute-accuracy-for-object-detection-
works.htm#:~:text=Recall%E2%80%94Recall%20is%20the%20ra
tio,the%20recall%20is%2075%20percent.&text=F1%20score
%E2%80%94The%20F1%20score,of%20the%20precision%20and
%20recall. [Accessed: 27-Jul-2022].

[44] “Confusion matrix for Machine Learning,” Analytics Vidhya, 14-
Jun-2022. [Online]. Available:
https://www.analyticsvidhya.com/blog/2020/04/confusion-matrix-
machine-learning/. [Accessed: 27-Jul-2022].

[45] R. Khandelwal, “Evaluating performance of an object detection
model,” Medium, 06-Jan-2020. [Online]. Available:
https://towardsdatascience.com/evaluating-performance-of-an-
object-detection-model-137a349c517b. [Accessed: 27-Jul-2022].

[46] “Mean average precision (MAP) explained: Everything you need
to know,” V7. [Online]. Available:
https://www.v7labs.com/blog/mean-average-
precision#:~:text=Mean%20Average%20Precision(mAP)%20is%2
0a%20metric%20used%20to%20evaluate,values%20from%200%
20to%201. [Accessed: 27-Jul-2022].

[47] R. Parmar, “Common loss functions in machine learning,”
Medium, 02-Sep-2018. [Online]. Available:
https://towardsdatascience.com/common-loss-functions-in-
machine-learning-46af0ffc4d23. [Accessed: 28-Jul-2022].

[48] U. Almog, “Yolo V3 explained,” Medium, 13-Oct-2020. [Online].
Available: https://towardsdatascience.com/yolo-v3-explained-
ff5b850390f. [Accessed: 28-Jul-2022].

[49] “Fiji,” Sustainable Pearls. [Online]. Available:
http://www.sustainablepearls.org/pearls/pearl-farming-around-the-
world/fiji/. [Accessed: 28-Jul-2022].

[50] Ialhashim, “Ialhashim/DenseDepth: High quality monocular depth
estimation via transfer learning,” GitHub. [Online]. Available:
https://github.com/ialhashim/DenseDepth. [Accessed: 28-Jul-
2022].

[51] Skhadem, “SKHADEM/3D-BoundingBox: Pytorch
implementation for 3D bounding box estimation using deep
learning and Geometry,” GitHub. [Online]. Available:
https://github.com/skhadem/3D-BoundingBox. [Accessed: 28-Jul-
2022].

	I. Introduction
	II. Related Work
	III. Methods
	A. Classification
	B. Localization
	C. Detection
	D. Orientation

	IV. Problems and Challenges
	A. Lack of a Dataset
	B. Complexity in Training
	C. Orientation Identification

	V. Procedure and Experimentation
	VI. Performance Analysis
	A. Precision & Recall
	Before understanding precision or recall, it is crucial to understand the intersection over union (IoU) metric. IoU measures how close a predicted bounding box is to the ground truth bounding box. To calculate IoU, the intersection of the ground trut...
	C. Mean Average Precision
	D. Loss
	E. Model Comparison

	VII. Results
	VIII. Future Work
	IX. Conclusion
	X. References

