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Abstract— The United Nations projects that the global human 
population will grow to eleven billion by 2100. As the populace 
increases, the demand for food will likewise grow. The global 
farming sector will need to help meet this increased need by 
boosting its efficiency and production volume. These industries 
will need to increase their output by improving their current 
practices by implementing innovative technologies that improve 
growth. One area, in particular, needs much improvement, the 
oyster farming industry still uses practices from the 19th century. 
Modernizing oyster farming has the potential to provide large 
quantities of a high-protein sustainable food source. This research 
aims to create an automated monitoring system that will allow 
oyster farmers to track their oyster crops' health and activity 
remotely. To create such a system, we utilize high-performance 
computing and deep learning to adapt an object detection model, 
YOLOv5_OBB, to recognize oysters under three different states 
of activity. By periodically using the object detector, farmers can 
use the activity to help infer the health of their oyster crops, 
reducing the amount of work required and thus increasing 
efficiency. In addition to applications in aquaculture, deploying 
the systems developed in this project can benefit oyster restoration 
efforts. For example, helping monitor the health of the restored 
populations, such as those in the Chesapeake Bay. 
 

Index Terms—Detection, Oysters, Aquaculture, Food, 
Orientation, GPU, HPC, Activity, YOLOv5, USDA, Industry1 

I. INTRODUCTION 

The United Nations projects that the global human 
population will increase by two billion people by 2050, 
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leveling off at over 11 billion people in 2100 [1]. As the 
population grows, there is a forecasted influx in the global 
food demand for food ranging anywhere from 60-90%. 
Currently, the preparation of the international food production 
sector is inadequate to deal with such an enormous surge in 
demand [2, 3]. To be equipped to match this new stipulation 
for food requires the creation of entirely new industries. The 
existing areas need to implement modern practices and 
increase efficiency using modern technologies. The shellfish 
farming industry is one sector with the potential to meet the 
increase in food demand. Shellfish are both a sustainable and 
environmentally friendly source of high-protein food; the 
industry also provides opportunities for economic growth 
along coastal regions [4]. 

However, the current practices within the aquaculture 
industry lack the technological advancements in the rest of the 
agricultural industry. In particular, the oyster farming sector 
still utilizes the same practices established during the 19th 
century, which are both inefficient and labor-intensive [5]. 
With the oyster industry in desperate need of updated 
practices, it is quickly falling behind the rest of the food 
production sector [6]. Considering the current limitations, the 
Food and Agriculture Organization of the United Nations 
ranks the industry as having the potential to experience 
massive growth [7]. Therefore, this research will explore one 
of the many possible technological advancements within the 
field. This project will study the prospect of using automated 
monitoring systems to increase efficiency by utilizing deep 
learning algorithms. By using monitoring systems, farms can 
use the oyster crop's activity to infer the health of the 
population and their adaptation to the environment. 

In this research, we adapt and optimize a deep 
learning model capable of detecting oysters' activity and 
orientation. By classifying oysters into three states of activity, 
closed, semi-open, and open, the model will be capable of 
monitoring oysters over time. In addition, this project explored 
the possibility of using each oyster's orientation to increase the 
accuracy of predictions. Previous research groups have sought 
to implement similar systems; however, this project improved 
the previous work by using orientation to provide more 
information about each oyster and generalizing the model to 
work across multiple environments [8]. In addition to its 
applications within the aquaculture industry, the use of this 
project's advancements may prove beneficial to oyster 
restoration endeavors. For example, remotely monitoring the 
oysters will help reduce the labor required across many 
locations, such as the work done within the Chesapeake Bay 
[9]. 

II. RELATED WORK 
 Within the confines of this field of research, there 
have been various attempts at creating an oyster detection 
system. The first of these systems reviewed was a class project 
by an undergraduate student at the University of Maryland 
Eastern Shore (UMES) [10]. The student was tasked with 
creating a fish classification algorithm to classify fish images 
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based on the species they contained. The model created could 
classify five different fish species with accuracy ranging from 
70-96%, depending on which species was being classified. To 
begin this research, we started by reimplementing this project 
using oysters to learn the basics of machine learning and better 
understand the tools being used. However, this system was 
only an image classifier and did not localize the oysters within 
the image; thus, it was left behind in search of more applicable 
models [11]. 
 The second piece of material reviewed was a 
comprehensive capstone design project done by students at 
UMES [12]. The project covered from design to an 
implementation capable of running an object detection system 
on a RaspberryPi. The model used by the researchers could 
localize oysters under specific conditions and classify their 
activity. The project took advantage of existing convolutional 
neural networks to create the oyster detection system, 
therefore requiring less direct implementation [13]. However, 
the model's performance may be limited in real-world 
applications due to the dataset being composed of images from 
a tank of oyster shells placed in different activity states, 
possibly limiting the model's performance in underwater 
environments [14]. 
 The final related work review was a research paper 
published by researchers at the University of Maryland 
College Park [15]. The project utilized a Remotely Operated 
underwater Vehicle (ROV) to take pictures of oysters in 
various underwater locations. The annotated images were fed 
into Facebook Research Group's Detectron2 model. As a 
result, the researchers were able to train an accurate model 
capable of localizing the oysters within an image. However, 
this research did not seek to classify the oyster's state of 
activity. Additionally, the model's accuracy was around 79%, 
thus leaving room for some improvement [16]. Consequently, 
our project takes the strengths of each of these projects and 
combines them into a single general model capable of oyster 
activity and orientation identification.   

III. METHODS 
 In order to detect an oyster and its orientation within 
an image, an object detector needs to accomplish three steps, 
classification, localization, and bounding box rotation. 
Combining all of these steps, one is able to implement a fully 
functioning system that can identify oysters' orientation. 

A. Classification 
The Convolutional Neural Network (CNN) is the 

most common type of classifier. The CNN is a particular type 
of neural network that seeks to mimic the way the human 
visual cortex works by simulating virtual neurons. Each of 
these neurons contains a mathematical function that is only 
activated if the value input passes a defined threshold. By 
connecting these neurons, they can be made to simulate the 
behavior of a human brain [17]. As a result, a CNN can reduce 
the dimensions of an image without losing the information 
contained within, thus reducing the amount of computational 
power needed to classify it. To achieve its classification, a 
CNN uses three main layers, convolutional layers, pooling 
layers, and a fully connected layer. The convolutional layer 
works by passing a filter over each color channel of the input 

image; these values are then summed and output into a feature 
map.  

 
FIGURE I 

 

 
Fig 1. This figure shows a convolutional layer with 2x2 filters, each filter 
passes over a layer of the input image, and their results are summed into the 
feature map [14]. 
 
Each filter has specialized weights to look for specific features 
within the input image. The programmer may manually 
specify the weights; however, much more commonly, weights 
are learned by the network by feeding it the data to be 
classified in a network training process. By looking for 
specific features, the network can save the dominant features 
that make up the image while reducing the dimensionally [18]. 
 The output of the convolutional layer is passed into 
the next section of the model, the pooling layer. The pooling 
layer is designed to shrink the dimensions of the feature map 
further while still extracting the details. Like the convolutional 
layer, the pooling layer uses a filter to pass over the feature 
map and extract information. There are two kinds of pooling, 
max, and average pooling. Max pooling takes the maximum 
value from the filter and outputs that value into the reduced 
feature map. In contrast, average pooling takes the average 
value of the filter and places that value into a reduced feature 
map.  
 

FIGURE II 
 

 
Fig 2. The above figure shows the two kinds of pooling. Max pooling takes 
the maximum value, and average pooling takes the average of the values [15]. 
 
In addition to reducing the dimensionality, the pooling layer 
also reduces noise within the image. An example might be 
removing the background from the subject or filtering out 
other objects that are not being classified [19]. 

Lastly, the output of the convolutional and pooling 
layers is passed to the fully connected layer. The fully 
connected layer contains the neurons that will be used to 
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classify the image. These neurons learn which of the features 
extracted make up each object being classified. During the 
training process, the neurons' weights in this layer are updated 
to match the training data. The output of this layer is a class 
label with the value that the model thinks the image contains 
[20]. After the network is trained, it can be used to classify 
images it has not seen before. Together, the layers make up a 
CNN model, and these models can be of different sizes or 
depths depending on the application. 

B. Localization 
 Image localization builds upon image classification; 
usually, the first layers of an image localizer are made up of 
CNN layers. However, unlike a convolutional neural network, 
an object localizer predicts four values, the x and y coordinate, 
and the width and height rather than a prediction label. The 
four output values draw a bounding box around each object of 
interest. In contrast to object detection, localization, like 
classification, traditionally only works for a single object 
within an image. Object detection combines localization and 
classification for multiple objects within an image [21]. 

C. Detection 
YOLOv5 is a single-stage object detector made of 

three major components, the backbone, neck, and head. 
Similar to the convolutional layers of a CNN, the backbone's 
primary purpose is to extract key features from the input 
image. This project used the YOLOv5 Oriented Bounding 
Boxes (YOLOv5_OBB) based on the YOLOv5 architecture. 
YOLOv5 (You only look once) is built on a system that 
divides the input image into a grid. Each region is accountable 
for detecting the objects inside itself within the grid system 
[22]. YOLOv5 uses a backbone known as DarkNet-53, which 
provides better performance than previously used models. A 
traditional CNN can be transformed into a model backbone by 
cutting off the network's final layers and replacing them with 
filters that will predict bounding boxes. The neck then 
generates feature pyramids which the model uses to generalize 
objects at different scales. Pyramids help the model learn the 
features of objects it is trying to detect, allowing for 
generalization. YOLOv5 takes advantage of a Path 
Aggregation Network, also known as PANet, which attempts 
to boost the information flow by shortening the path it needs 
to follow. Finally, the model head performs the actual 
detections. The head draws the bounding boxes around objects 
and produces the classifications [23, 24, 25]. 
 

FIGURE III 
 

 
 Fig 3. The above figure shows an illustration of the YOLOv5 
architecture. The backbone feeds into the feature pyramid network, which 
then passes its information to the head. Illustration obtained from [26]. 

D. Orientation 
YOLOv5_OBB builds upon YOLOv5 further by 

allowing for more accurate bounding boxes. The boxes 
produced by YOLOv5_OBB have an additional factor, 
orientation. Oriented bounding boxes allow the model's output 
to fit the objects of interest much more closely and provide 
additional information about the object. By building off 
YOLOv5, the oriented model keeps the same architecture but 
splits off the original model's head to add orientation to the 
bounding boxes.  

 
FIGURE IV 

 

 
Fig 4. This figure depicts YOLOv5_OBB architecture, similar to 

YOLOv5, and the significant difference is the orientation calculator splitting 
off of the model's head. This image was obtained from [23]. 

 
Some orientation detectors [27] opt for an eight-parameter 
representation for rotated bounding boxes, storing the x and y 
coordinates for each of the four vertices. YOLOv5_OBB, on 
the other hand, represents the boxes using five different 
values: the center x value, the center y value, the box width of 
the box, the height of the box, and the angle at which it is 
rotated [28].  

 
FIGURE V 
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Fig 5. The above image illustrates how YOLOv5_OBB represents 
the rotation of bounding boxes. Obtained from [28]. 

 
This project builds upon YOLOv5_OBB by providing 
additional information about the detected oysters using the 
information provided for each bounding box. By using the 
angle theta, length, and width, arrows parallel to the 
orientation axis are drawn. However, the direct orientation 
cannot be inferred due to the lack of information about the 
oyster's contours within a given image. Some viable solutions 
to this problem can be seen in the future work section. In 
addition to the arrows drawn, the oyster’s orientation is 
calculated using the ratio of length to width and the area of the 
box. 
 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 𝑟𝑟𝑟𝑟𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟 =  𝑟𝑟𝑟𝑟𝑡𝑡𝑓𝑓𝑡𝑡𝑤𝑤𝑟𝑟𝑟𝑟_𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡𝑟𝑟𝑟𝑟 ∗ (𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ ∗ ℎ𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡)

𝑚𝑚𝑓𝑓𝑚𝑚(𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡ℎ,ℎ𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡) ∗ 0.01 
       (1) 

 

 The above equation gives a good approximation of 
the rotation of each oyster; the rotation factor is calculated by 
taking the ratio of the shorter side over the long side. Then, 
multiplying by the area of the bounding box, the scale of each 
oyster is taken into account. In addition, the rotation factor is 
scaled by dividing by 1% of the longest side. Thus, the smaller 
the rotation factor, the more of the oyster’s face is visible to 
the camera; therefore, the greater confidence the model can 
have in its predictions.   

IV. PROBLEMS AND CHALLENGES 
 During this research, multiple complex challenges 
needed to be addressed before a final automatic detector could 
be produced.  

A. Lack of a Dataset 
The first challenge was creating a dataset, which was a 
challenging task. Traditionally, underwater datasets have been 
both expensive and time-consuming to compile due to the 
nature of underwater environments [29]. However, after 
searching, it became apparent that no existing oyster datasets 
were publicly available. Thus, this project required the 
creation of a dataset containing oysters within various 
environments. Unfortunately, finding good-quality images 
proved quite challenging. Therefore, the target size for the 
dataset was set at 1000 images, allowing for a suitable 
generalization of oysters while not requiring the majority of 
the research time. In addition, selecting images with various 
angles, subject sizes, and water clarity for the training set will 
allow the model to work in many real-world situations.  
 Initially, around 225 images of oysters were 
provided; however, each image needed labeling to fit the 
needs of this research [30]. Due to the nature and scale of this 
research, this project did not have the equipment or time to 
collect real-world images; thus, the remaining images for the 
dataset were collected from online sources. Each image 
needed to be annotated, manually cropping each oyster using 
polygons. All of the annotation for this project was done in 
Roboflow, an online dataset creation platform that allows for 
expiration into various object detection formats [31]. The 
dataset split the oysters into three states of activity: open, 

semi-open, and open. While there was no absolute metric, the 
labeling of the oysters followed the guidelines established in 
the Oyster Activity Detection System Report at UMES [32]. 
Closed oysters' openings range from 0-0.4 cm, semi-open 
comprised oysters from 0.5-0.9 cm, and open oysters are those 
with an opening greater than 1 cm.  

By splitting the oysters into distinct states of activity, 
the oyster crop's activity can be observed by taking inference 
on frames over time. Each state of activity is separated into a 
different class, represented by a unique color allowing quick 
reference without needing to read the label.  

FIGURE VI 

 

Fig 6. An example of images of oysters before and after annotation. Different 
oyster activities are differentiated by color. For example, closed oysters are 
shown in magenta, and semi-open oysters are dark blue. 

Additionally, data augmentations were applied to the dataset 
to increase the variety of information. Data augmentations are 
filters applied to the input images that change the data to 
represent different real-world scenarios. For example, crops 
and zooms stand in place of different camera locations, sheers 
and rotations show different camera rotations, and brightness 
and contrast mimic different lighting scenarios [33]. The 
augmentations on the training set help the model recognize the 
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oysters under adverse conditions such as low light conditions, 
cloudy water, and varying types of obstructions. 

FIGURE VII 

Fig 7. The above example is the YOLOv5 object detector detecting an 
obscured oyster in slightly cloudy water. 

Furthermore, by selecting the data from numerous different 
sources, the dataset helps ensure that model covers as many 
environments as possible. A diverse dataset improves over 
previous implementations that used relatively homogeneous 
data [34]. 

B. Complexity in Training 

 The second challenge addressed was training the 
object detection models using the dataset. Before training an 
object detection model, the dataset is split into three segments, 
training, validation, and testing data. The training data is used 
to teach the model, while validation and testing are used to 
evaluate the model's performance. The dataset is split into 
batches, then fed to the model in steps called epochs. The 
model's performance is improved by adjusting the number of 
epochs, batch size, and image size during the training process. 
This project used 640px by 640px images with varying batch 
sizes. The number of epochs varied from run to run but 
usually ranged from 250 to 1000. 

All object detectors were programmed in Python, a 
relatively computationally demanding language compared to 
C and C++ [35]. Due to the scale and complexity of the 
detector architectures, the amount of time and computational 
power needed to train the models were not readily accessible 
[36]. To compensate for the lack of high-powered computers, 
the object detectors were trained using Google Colab, 
Google's virtual remote Python environment [37]. Colab 
provides users access to High-Performance Computing 
powered by GPU acceleration accessible through a web 
browser. Nevertheless, even with access to high-performance 
GPUs and high RAM runtimes, the training process still took 
multiple days to run each time. Thus, a significant amount of 
time was required for the training process, meaning that 
improving model performance through iteration was quite 
tricky. Multiple training instances were run in parallel using 
several computers to remedy this. 

C. Orientation Identification 
 The final major issue tackled was identifying the 
oysters' orientation. Again, the YOLOv5_OBB model proved 
a valuable tool for accomplishing this task. In addition to the 
oriented bounding boxes provided by the object detector, 
arrows and rotation values were added. The arrows point 
parallel to the orientation axis and are color-coded based on 
the orientation of the rotation factor of the oyster. The rotation 
factor is calculated using the ratio of the short side of the 
bounding box over the long side. This information can fully 
detect the oysters' orientation and create a more accurate 
detection model. Although such a system could not be 
implemented due to time constraints, those wishing to 
continue this research should visit the Github repository to 
find more information. 

V. PROCEDURE AND EXPERIMENTATION 
 In this project, we started by repeating the fish 
species classification project at UMES to understand the 
systems and tools. The project was reimplemented using 
oyster images rather than previously used fish species. After 
the reimplementation, more research was conducted to learn 
more about the direction to take in this research. As stated 
previously, it became apparent that there were no available 
datasets of oyster images, so one would need to be created for 
this project. Additionally, after reading the documentation 
provided and speaking with the faculty mentor, an oyster 
object detector was decided upon. Initially, as images were 
collected, they were labeled into one of two states, open or 
closed. After around 350 images had been collected, the 
research set out to implement object detection using this data. 
 Due to the time constraints and wealth of preexisting 
models, this research took advantage of available object 
detection models for implementation. The first model used 
was Facebook Research Group’s Detectron2. Detectron2 is a 
deep learning model specializing in image segmentation and 
object detection [38]. The research group also provides access 
to the model zoo, a collection of model backbones. The three 
backbones trained were Faster_RCNN_R_50_C4_3x, 
Faster_RCNN_X_101_ 32x8d_FPN_3x, and 
Retinanet_R_101_FPN_3x. Each model provides its benefits 
and disadvantages; thus, robust training was done on each 
backbone [39]. However, due to some constraints of the 
Detectron2 model and a shift in the project's goals, this model 
was left behind in search of another architecture. 
 Next, we focused on working with the YOLOv5 
object detector. Like Detectron2, YOLO provides access to a 
selection of backbones based on the project's needs. This 
project experimented with the small (yolov5s) and extra-large 
(yolov5x) backbones and compared the results. When 
compared to Detectron, YOLO had several benefits that made 
it more beneficial for use in this project. First, YOLO 
separates the detected classes using color, making it more 
intuitive to see the oysters' activity at a glance. Secondly, the 
YOLO seemed to provide much better results for the same 
amount of training time. Finally, in the tests done, YOLOv5 
was better at detecting small objects when compared to 
Detectron. 
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 After experimenting with YOLOv5 and achieving 
decent results, this project shifted to additionally detect three 
different states of activity and infer each oyster's orientation. 
An oyster's orientation significantly influences the ability to 
detect activity, meaning that if orientation can be correctly 
detected, future models can be made more accurate. To 
attempt to solve this issue, YOLOv5_OBB was chosen for this 
project. Already having some experience with YOLOv5, 
YOLOv5_OBB seemed the natural choice for this problem. 
However, using this new model, the dataset format needed to 
be changed to use oriented bounding boxes. Therefore, the 
dataset was grown until it reached 1000 images, providing a 
good variety of oyster data. Unfortunately, the Roboflow 
export for the oriented bounding box format had issues and 
was incompatible with the model. To fix this, we developed a 
script to format the dataset properly and uploaded it to the 
Github repository for those interested in creating their versions 
of the dataset [40]. 

VI. PERFORMANCE ANALYSIS 
 After the object detector was trained, it was evaluated 
using some standard object detection metrics, recall, precision, 
mAP@0.5, and mAP@0.5:0.95. A model's loss can also 
measure how well a model performs on a dataset. 

A. Precision & Recall 

 Before understanding precision or recall, it is crucial 
to understand the intersection over union (IoU) metric. IoU 
measures how close a predicted bounding box is to the ground 
truth bounding box. To calculate IoU, the intersection of the 
ground truth and predicted bounding box is divided by the 
union of the two boxes [41]. The model's performance can be 
reasonably measured by calculating the intersection over the 
union value for each bounding box. 

FIGURE VIII 

 

Fig 8. Above is a depiction of the intersection over union calculation. IoU is 
described as 1 (Intersection of the predicted and ground truth boxes) over 2 
(the union of the same two boxes). Image from [41]. 

Usually, a good IoU value is said to be anything over 0.5; 
anything lower is considered poor. Using IoU, both recall and 
precision can be calculated. Using such an IoU threshold, the 
truth value can be determined for each prediction. If the model 

predicts a box with an IoU value over 0.5, it is called a true 
positive. On the other hand, if the value is less than 0.5, the 
prediction is considered a false positive. Lastly, if there is a 
ground truth box that the model fails to predict, it is labeled as 
a false negative [42]. The other possibility, true negative, is 
not needed in these calculations. 

FIGURE IX 

 

Fig 9. This figure shows all the possible values for a model's prediction from 
left to right, top to bottom, true positive, false positive, false negative, and true 
negative. Image obtained from [43]. 

By computing these values for each bounding box, recall and 
precision can be calculated for every image. The recall is 
computed by taking the ratio of the number of correctly 
predicted objects over the number of total objects. 

𝑅𝑅 =
 (𝑇𝑇𝑟𝑟𝑇𝑇𝑤𝑤 𝑃𝑃𝑟𝑟𝑃𝑃𝑤𝑤𝑡𝑡𝑤𝑤𝑃𝑃𝑤𝑤𝑃𝑃)

(𝑇𝑇𝑟𝑟𝑇𝑇𝑤𝑤 𝑃𝑃𝑟𝑟𝑃𝑃𝑤𝑤𝑡𝑡𝑤𝑤𝑃𝑃𝑤𝑤𝑃𝑃 +  𝐹𝐹𝑓𝑓𝐹𝐹𝑃𝑃𝑤𝑤 𝑁𝑁𝑤𝑤𝑤𝑤𝑓𝑓𝑡𝑡𝑤𝑤𝑃𝑃𝑤𝑤𝑃𝑃)
                (2) 

Precision, however, measures how many of the model's 
predictions were correct. The model's precision can be 
calculated by taking the ratio of correct guesses over the total 
number of guesses [44]. 

𝑃𝑃 =  (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃)
(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑃𝑃)

                (3)  

C. Mean Average Precision 
 By using precision and recall, a more accurate 
representation of the model's performance can be calculated, 
mean average precision (mAP). Before the mAP can be 
determined, average precision must be computed for each 
class. Then, the precision and recall values are graphed; taking 
the integral of this graph will return the AP value for the given 
class. By determining AP at a given IoU value for each class, 
the mAP can be computed by simply taking the average of all 
the AP values. mAP@0.5:0.95 is evaluated by calculating the 
mAP at IoU values ranging from 0.5 to 0.95 at intervals of 
0.05 [45].  

FIGURE X 
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Fig 10. Above is the precision-recall curve for a 325-epoch training attempt 
on yolov5x. 

Different models can be compared using a combination of 
these metrics, and the best performers can be easily identified.  

D. Loss 

Machine learning models learn by using a loss function. A loss 
function helps an algorithm grasp a specific dataset. A loss 
function can gradually reduce the model's error by measuring 
the distance between the ground truth value and the predicted 
value [46]. YOLOv5_OBB uses four different loss functions; 
the first, class loss, measures how well a model classifies the 
contents of a bounding box. Box loss is a metric to determine 
how closely the predicted bounding box fits the object. 
Objectness loss helps the model choose the predicted box with 
the best IoU value [47]. Finally, theta loss is used to accurately 
teach the model to predict an object's angle. 

E. Model Comparison 

Both yolov5n and yolov5x were trained, and their results were 
compared. When trained on the same number of epochs, the 
larger of the two models, yolov5x, took much longer to train 
but produced significantly better results. 

TABLE I 

 Precision Recall mAP 0.5 mAP 0.05:0.95 

ylv5n 0.48 0.47 0.45 0.18 

ylv5x 0.53 0.62 0.53 0.28 
The two models trained for 325 epochs on the same dataset. The time needed 
to train yolov5n was much shorter than the time required for yolov5x. Higher 
numbers indicate better performance. 
 
However, having a much more complex model structure, 
yolov5x began to overfit the data, increasing the model’s loss. 
When training a model, the goal is to minimize the loss values, 
meaning that the model is correctly generalizing the dataset it 
is being fed. One possible method of reducing loss during 
training is introducing dataset augmentations. However, 

complex augmentations can adversely impact the model's 
performance, thus meaning it must be trained for more epochs. 

TABLE II 

 obj_loss box_loss cls_loss theta_loss 

ylv5n 0.11 0.048 0.023 0.15 

ylv5x 0.15 0.047 0.024 0.16 
Both trained on 325 epochs, and the metrics' loss values are displayed above. 
Having a less complex structure, yolov5n performed noticeably better in both 
obj_loss and cls_loss. Lower values are better. Values are rounded.  

The developed program provides its users with a 
choice by training both models. The larger model makes much 
more accurate bounding boxes and predicts more off them; 
however, its inference time is much slower, running at about 
three frames per second on an IntelⓇ XeonⓇ E5-2650 v4 24 
Core CPU @ 2.20GHz with 32GB of RAM. On the other 
hand, while the smaller model may not be as accurate, it runs 
much faster, achieving above 30 frames per second, allowing 
it to be used for real-time inference. In addition to these 
results, both models were trained for longer durations to 
achieve better performance. 

VII. RESULTS 
 After the models were trained, we ran the models on 
various images of oysters to visualize the results. First, each 
oyster detected is labeled with its class which is also shown by 
the color. Following the label is the model's confidence score, 
a measure of how confident the model is that that bounding 
box contains the specified class. Next is the rotation score; the 
lower this number, the more likely it is that the oyster’s 
opening is facing the camera, thus making it easier to classify 
its activity. Finally, the rotation angle specifies how many 
degrees the bounding box is rotated off-axis. 

FIGURE XI 

           

Fig 11. Right yolov5n left yolov5x. The number of each oyster detected can 
be seen in the top right. The arrows point parallel to the axis of orientation. 

Yolov5x can detect more of the smaller oysters within the 
scene and have better fitting bounding boxes. In addition, it 
has better classification accuracy, having a better distinction 
between semi-open and open oysters.  
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A different example, inference on data that the model 
has not seen before can give a good insight into how a model 
generalizes what it has learned. 

FIGURE XII 

 

Fig 12. Above yolov5n, below yolov5x. Image obtained from [48]. 

This image of an oyster farm differs from all the data the 
model was trained on. The looking-up view is something that 
the model has not seen before, and it does a respectable job 
identifying the oysters. Yolov5x identifies many more oysters 
and has much better fitting bounding boxes; however, yolov5n 
can detect one of the oysters that the larger model missed. 
Overall, the object detector shows promising results on new 
data, showing that it has potential for real-world applications. 

 However, the object detector does have some 
limitations. Firstly, the detector has trouble distinguishing 
empty oyster shells from live oysters. A possible solution 
would be to train the detector with an additional class, oyster 
shell, allowing the detector to distinguish between live and 
dead specimens. Secondly, the model may not find all the 
oysters within a scene; the number of detections made may be 
adjusted by reducing the confidence threshold, however, this 
has the adverse effect of increasing the number of false 
positive indications made. Additionally, the labels become 
unreadable in crowded scenes containing many oysters due to 
the vast amount of them on screen at once. Finally, the 
orientation detection is subject to the camera’s perspective. 
The orientation of oysters pointed directly at the camera 

cannot be calculated accurately due to the lack of 3D 
information. 

VIII. FUTURE WORK 
 Although this project made progress towards the final 
goal, a considerable amount of work still needs to be done 
before a complete project can be delivered. This section will 
briefly discuss what still needs to be done and possible routes 
for completing the project. While this research provided some 
orientation information, no calculations were done with the 
information. One possible next step for this project would be 
to take the information provided by this network and feed it 
into another model that uses orientation output to make more 
accurate classifications. Another path is to improve the 
orientation detection done by this model. Currently, the 
orientation is subject to the camera angle, and subjects pointed 
directly at the camera are not correctly classified. One solution 
is to use depth information such as that seen below. 

FIGURE XIII 

 
Fig 13. Figure a) An image of oysters underwater. Figure b) Depth inference 
run on figure a. Figure c) An image of oyster above water. Figure d) Depth 
inference run on figure c. 
 

Initial results were obtained by passing images 
through the pre-trained DenseDepth, a deep learning model for 
extracting depth information from an image [49]. Deeper parts 
of the image are shown in orange, and the regions closer to the 
camera are shown in blue. Even without training this model on 
oyster images, these results were achieved; with more 
exploration into this topic, better results could likely be 
achieved. Secondly, 3-dimensional bounding boxes could 
improve orientation detection by using all three dimensions 
that an oyster can face. Using 3D bounding boxes could solve 
the issues previously described [50].  

IX. CONCLUSION 
 As the human population grows, a large influx in 
global food demand will follow. Shellfish, specifically oysters, 
have been identified as a potential future food source to meet 
this demand. However, the oyster farming industry lacks the 
technological advancements needed to scale with newfound 
demand. This research sought to create an automated oyster 
detection system that will assist farmers in monitoring their 
oyster crops as a solution to this problem. By taking advantage 
of preexisting object detection models, this project used a 
custom compiled dataset to train an object detector to detect 
oysters in three different states of activity. In addition, this 
project attempted to improve previous work by using the 
oysters' orientation to assist in activity recognition. By taking 
advantage of these emerging technologies, farmers can have 
the upper hand when tackling one of the world's complex 
challenges. 
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